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Abstract— In this paper, we propose a new method for
implementation of a High-Gain Observer (HGO) to cope with
measurement noise through Stochastic Approximation (SA).
Most approaches have been using a trade-off between a speed
of regeneration of states in the presence of uncertainties
and the effect of measurement noise. Through SA, we are
able to reserve authentic properties of the HGO i.e., a fast
reconstruction of system states and robustness to uncertainties,
while dealing with the effect of measurement noise both in
practical and analytical manners. Regularity conditions are
verified to analyze the stability by the associated Ordinary
Differential Equation (ODE), i.e., the ODE method. Stability
analysis of the full system is conducted. Numerical simulation
results demonstrate the validity of the proposed design method.

I. INTRODUCTION

It is well-known in [1], [2], [3] that HGOs have properties,

i.e., quick convergence and performance recovery with high

gains while high gains amplify the effect of measurement

noise. There is a trade-off between fast reconstruction of

system states under uncertainties and the effect of measure-

ment noise. Based on this trade-off, high gains are used

in a transient period to obtain a fast regeneration of states

since the effect of measurement noise is small enough in an

innovation term. In the steady state period, relatively low

gains are used to reduce the effect of measurement noise

because the effect of measurement noise is not negligible

in the innovation term. To deal with this trade-off, Ahrens

and Khalil in [1] implemented switched high gains where

high gain is used during the transient period and relatively

low gain is used at steady state. In [2], an adaptive law

was applied to appropriately set high-gain values in the

HGO to have the trade-off. Prasov and Khalil in [3] em-

ployed nonlinear high gains in the HGO to achieve the

trade off. All the aforementioned schemes were realized in

continuous-time systems. In [4], without using high gains

the modulation integral observer for linear continuous- and

discrete-time Single-Input-Single-Output (SISO) systems in

the presence of bounded additive measurement noise was

introduced based on modulation integrals. The modulation

integrals can deal with hybrid dynamic systems, i.e, linear

continuous- and discrete-time systems.

The ODE method (see [5], [6], and [7]) for SA algorithms

has been established with regularity conditions in order

to obtain averaged dynamics without the effect of noise.

Applications of SA were introduced in design of controls

for multi-agent systems under noise in [8], [9], [10]. In [8],

through the SA method, the effect of measurement noise

was averaged out and stability of the closed-loop system

was guaranteed. The effect of noise in [9] was coped with in

optimization for a mobile robotic network. Authors in [10]

employed the SA approach for stochastic source seeking

with mobile robot networks and showed the experimental

validation.

This paper introduces a new way to implement the HGO

in the presence of measurement noise via SA. Instead of

using the trade-off between a fast reconstruction of states

under uncertainties and the effect of measurement noise,

SA is used to reserve a fast reconstruction of states with

robustness to uncertainties and to deal with measurement

noise in both practical and analytical senses. Practically, we

show that the effect of measurement noise was diminished.

Most importantly, our scheme enables us to analyze the

stability of the system in the absence of the measurement

noise via the ODE method. The regularity conditions are

checked to use the ODE method [5]. Stability analysis of

the full system is fulfilled. Through numerical simulation,

the effectiveness of the proposed method is demonstrated.

This paper is organized as follows. In Section II, the SA

scheme is reviewed. In Section III, the problem statement is

given. Section IV presents a new method for implementation

of the HGO to average out the effect of measurement

noise using the ODE method. In Section V, the stability

of the full system is analyzed through regularity conditions

in the ODE method. The simulation results are shown in

Section VI to demonstrate the validity of the proposed

method. Section VII gives concluding remarks and future

work.



II. STOCHASTIC APPROXIMATION

In this section, we introduce the Stochastic Approxima-

tion [5] in order to use the ODE method [5], [6], and [7],

i.e., the stochastic difference equation asymptotically tracks

a deterministic ODE.

The SA scheme considers the discrete-time system

x(k+ 1) = x(k)+ a(k)[h(x(k))+M(k)], k ≥ 0 (1)

where x, h ∈ Rr; k is the kth sampling instant time, t =

∑n
k=1 a(k) with a decreasing sequence (decreasing sampling

period) a(k), and M(k) is a Martingale Difference Sequence

(MDS). To use the ODE method, the system (1) is required

to satisfy the following conditions.

(A.1) The map h : Rr → Rr is Lipschitz: ‖h(a)− h(b)‖ ≤
L‖a− b‖ for some 0 < L < ∞.

(A.2) Stepsizes a(k) are positive scalars satisfying

∑
k=1

a(k) = ∞, ∑
k=1

a2(k)< ∞ (2)

(A.3) M(k) is a martingale difference sequence with respect

to the increasing family of σ -fields

Fk , σ(x(m),M(m),m ≤ k) (3)

for k ≥ 0, such that

E[M(k+ 1)|Fk] = 0, Almost Surely (a.s.), (4)

for k ≥ 0, and M(k) are square-integrable with

E[‖M(k+ 1)‖2|Fk]≤ K(1+ ‖x(k)‖2) a.s. (5)

for k ≥ 0 and some constant K > 0.

(A.4) The iterates of (1) remain bounded a.s., that is

sup
k

‖x(k)‖< ∞, a.s. (6)

Through the next Lemma 2.1 and Theorem 2.2 (i.e., re-

spective Lemma 1 and Theorem 2 in Chapter 2.1 of [5],

i.e., the ODE method), the stochastic difference equation

(1) asymptotically tracks a deterministic ODE

ẋ(t) = h(x(t)), t ≥ 0 (7)

The main idea for the Lemma is to construct an interpolated

trajectory x̄(t) during a time period Ik = [t(k), t(k+1)], k≥ 0.

Then, it is shown that the interpolated variable x̄(t) almost

surely approaches the solution set of the ODE (7). Let us

define a piecewise, continuous linear x̄(t), t ≥ 0, by x̄(t(k))=
x(k), k ≥ 0, with linear interpolation on each interval Ik

x̄(t) = x(k)+ [x(k+ 1)− x(k)]
t − t(k)

t(k+ 1)− t(k)
, t ∈ Ik (8)

Let xs(t) t ≥ s, denote the unique solution of (7) starting at

the instant time s

ẋs = h(xs(t)), t ≥ s, (9)

with xs = x̄(s) s ∈ R. Similarly, let xs, t ≤ s, denote the

unique solution of (7) ending at the instant time s

ẋs = h(xs(t)), t ≤ s, (10)

with xs(s) = x̄(s),s ∈ R.

Lemma 2.1: For any T > 0,

lim
s→∞

sup
t∈[s,s+T ]

‖x̄(t)− xs(t)‖= 0, a.s.

lim
s→∞

sup
t∈[s−T,s]

‖x̄(t)− xs(t)‖ = 0, a.s.
(11)

Theorem 2.2: Almost surely, the sequence {x(k)} gener-

ated by (1) converges to a (possibly sample path dependent)

compact connected internally chain transitive invariant set of

(7).

III. PROBLEM STATEMENT

We consider a continuous differential system, i.e., a

single-input-single-output nonlinear system

ẋ = Acx+Bcφ(x) , f (x) (12)

y =Ccx (13)

where x ∈ Rr is the state, y ∈ R is the measured output, and

the matrices Ac ∈ Rr×r, Bc ∈ Rr×1, and Cc ∈ R1×r are

Ac =















0 1 . . . . . . 0

0 0 1 . . . 0
...

...

0 . . . . . . 0 1

0 . . . . . . 0 0















, Bc =















0

0
...

0

1















,

Cc =
[

1 0 . . . . . . 0
]

(14)

Assumption 1:

• The function φ(x) is globally Lipschitz and φ(0) = 0.

• The system (12) is asymptotically stable at x = 0.

For the system (12), the High-Gain Observer is given by

˙̂x = Acx̂+Hy−HCcx̂

= Acx̂+HCc(x− x̂)
(15)

where x̂ ∈ Rr is the estimate of x and the observer gain H

is

H =

[

h1

ε

h2

ε2
. . . . . .

hr

εr

]T

(16)

Sufficiently small ε > 0 is used and hi for i = 1, . . . ,r are

chosen such that the polynomials

sr + h1sr−1 + · · ·+ hr = 0 (17)

are Hurwitz.

It was shown in [1] that the high gain H in (16) plays an

important role to attenuate uncertainties whereas it amplifies

the effect of measurement noise.



IV. IMPLEMENTATION OF HIGH-GAIN OBSERVERS

We propose to use SA [5] to deal with the effect of

measurement noise while utilizing the high gains to deal

with uncertainties.

For design purpose, we consider the following continuous-

time HGO

q̇ =

(

1

ε

)

[Acq+H0(y−Ccq)]

=

(

1

ε

)

[A0q+H0y]

(18)

where ε is a small positive parameter,

q = Dx̂

D = diag[1 ε · · · εr−1]

A0 = Ac −H0Cc

H0 =
[

h1 h2 . . . . . . hr

]T

(19)

and hi for i= 1, . . . ,r are chosen such that A0 is Hurwitz. The

earlier works on HGO implementation with a fixed sampling

time period were presented in [11], [12], [13]. The HGO in

(18) is discretized using the Forward Difference (FD) to

obtain

q(k+ 1)=q(k)+

(

T

ε

)

[

A0q(k)+H0y(k)
]

(20)

where the measurement y is y= x1+ν , T is a fixed sampling

time period, and ν(k) is measurement noise and has the

following assumption.

Assumption 2: The measurement noise ν(k) is bounded

independent identically distributed random variable with

zero mean and finite variance.

We note that ν(k) is a MDS, since ν(k) is a bounded

independent random variable with zero mean and finite

variance in Chapter 3.3 of [14].

The key idea of our SA scheme is to use the decreasing

sequence a(k)

a(k) = αεb(k) (21)

where b(k) < 1 is chosen to satisfy (2) in (A.2) and α
is chosen to be sufficiently small enough, which will be

described in the next section. With the decreasing sequence

a(k), the HGO is implemented as

q(k+ 1) =q(k)+
a(k)

ε
[A0q(k)+H0y(k)]

=q(k)+
a(k)

ε
[A0q(k)+H0Ccx(k)+H0ν(k)]

x̂(k) =D−1q(k)

(22)

V. CONVERGENCE ANALYSIS

In this section, we check regularity conditions (A.1) to

(A.4) in Section II for implementing the HGO in (22) to

use Lemma 2.1 and Theorem 2.2.

To obtain a discrete-time model of the full system, the

plant is discretized using the same scheme that was used to

discretize the observer. Using the FD, the plant dynamics

(12) is discretized as

x(k+ 1) = x(k)+ a(k)[Acx(k)+Bcφ(x(k))] (23)

To obtain the MDS satisfying (A.3), we follow the proce-

dure in Chapter 3.3, [5]. With (22) and (23), the full system

is obtained by

χ(k+ 1) = χ(k)+ a(k)F(χ(k),ν(k)) (24)

where

χ = [x q]T , F(χ ,ν) =

[

Acx+Bcφ(x)
1

ε
[A0q+H0Ccx+H0ν]

]

(25)

Let us take the expectation

h(χ) = E[F(χ ,ν)] (26)

For the condition (A.1), h(χ) satisfies Lipschitz condition

since φ(x) is Lipschitz with respect to x from Assumption 1.

The decreasing sequence a(k) for the SA scheme is chosen

to satisfy the condition (A.2). A MDS ν̄(k) is defined by

ν̄(k) = F(χ(k),ν(k))− h(χ(k)) =

[

0
H0

ε
ν(k)

]

(27)

which satisfies (4) in (A.3).

For the SA, we rewrite the full system as

χ(k+ 1) = χ(k)+ a(k)[h(χ(k))+ ν̄(k)] (28)

To check the condition (A.4), we note that the states of the

plant are bounded by Assumption 1. We show boundedness

of the state of the observer. An equation of the second row

in (28) is written as

q(k+ 1)=q(k)+αb(k) [A0q(k)+H0G(k)] (29)

where G(k)

G(k) =Ccx(k)+ν(k) (30)

is viewed as a bounded input of the system (29) due to

boundedness of the state x(k) and MDS ν̄(k). For the

condition (A.4), we need to show that the state of the system

(29) is bounded. Let V = qT Pq and P is a solution of the

Lyapunov equation

AT
0 P+PA0 =−Q (31)

with Q ≻ 0, where symbols ≻ and ≺ denote positive and

negative definite matrices, respectively. Let us take ∆V =
V (k+ 1)−V(k).

∆V = qT (k+ 1)Pq(k+ 1)− qT(k)Pq(k)

= {q(k)+αb(k)[A0q(k)+BG(k)]}T p

×{q(k)+αb(k)[A0q(k)+BG(k)]}− qT(k)Pq(k)

(32)



Then

∆V ≤−αb(k)
[

c1 −αb(k)Mp

]

‖q(k)‖2

+αb(k)
[

c2 +αb(k)c3

]

‖q(k)‖+α2b2(k)c4

(33)

where

Mp = ‖A0‖2‖P‖ (34)

‖A0‖ =
√

λmax(AT
0 A0), ‖P‖ = λmax(P), λmax(N) denotes a

maximum eigenvalue of N, and c1, c2, c3, and c4 are positive

constants independent of α and b(k). ∆V can be rewritten

as

∆V ≤−αb(k)
[

c5 −αb(k)c6

]

V (k)

+αb(k)
[

c7 +αb(k)c8

]
√

V (k)+α2b2(k)c4

(35)

with c5, c6, c7, c8 > 0, which shows that with sufficiently

small enough α , the system is Bounded-Input-Bounded-

State (BIBS) stable.

Remark 1: To find a less conservative value of α , a

feasibility Linear Matrix Inequality (LMI) can be used for

BIBS stability, which is equivalent to the condition

ĀT PĀ−P = αb(k)[AT
0 P+PA0 +αb(k)AT

0 PA0]≺−cI

(36)

where Ā = I +αb(k)A0 and c > 0. For the selected α and

b(k), there should be P = PT ≻ 0 such that (36) is satisfied.

All regularity conditions (A.1) to (A.4) are satisfied. Using

Lemma 2.1 and Theorem 2.2 in Section II, now we can

analyze the stochastic difference equation (24) through the

associated ODE

χ̇ = h(χ) (37)

where measurement noise is averaged out. The stability

of the averaged dynamics (37) of the full system can be

analyzed similar to [15]. From (37), we conclude that the

averaged dynamics of the plant is asymptotically stable at

x = 0 and the averaged dynamics of the HGO is exponen-

tially stable at q = 0.

VI. SIMULATION RESULTS

In this section, numerical simulation results in HGOs

with the fixed sampling time period T and the decreasing

sequence a(k) are compared.

The plant is given by

ẋ1 = x2

ẋ2 =− x1

1+ x2
1

− x2
(38)

The continuous-time HGO for the plant is

˙̂x1 = x̂2 +
h1

ε
(y− x̂1)

˙̂x2 =
h2

ε2
(y− x̂1)

(39)

where y is a measurement, x̂1 and x̂2 are estimates of x1

and x2, respectively, and the observer gains h1 and h2 are

chosen such that the polynomials

s2 + h1s+ h2 = 0 (40)

is Hurwitz. Using the FD and the fixed sampling time period

T , the plant and the HGO are discretized as

x1(k+ 1) = x1(k)+Tx2(k)

x2(k+ 1) = x2(k)+T

[

− x1(k)

1+ x2
1(k)

− x2(k)

]

y(k) = x1(k)+ν(k)

(41)

where the fixed sampling time T is chosen as T = 0.0004,

and the measurement noise ν(k) is the i.i.d. uniform on

[−0.5 0.5], and

q1 f
(k+ 1) = q1 f

(k)+
T

ε
[q2 f

(k)+ h1(y(k)− q1 f
(k))]

q2 f
(k+ 1) = q2 f

(k)+
T

ε
[h2(y(k)− q1 f

(k))]

x̂1(k) = q2 f
(k), x̂2(k) =

q2 f
(k)

ε

(42)

where

h1 = 2, h2 = 2, ε = 0.01, α = 0.04 (43)

The HGOs with SA for (41) are

q1(k+ 1) = q1(k)+
a(k)

ε
[q2(k)+ h1(y(k)− q1(k))]

q2(k+ 1) = q2(k)+
a(k)

ε
[h2(y(k)− q1(k))]

x̂1(k) = q1(k), x̂2(k) =
q2(k)

ε

(44)

where a(k) = αεb(k) and b(k) = 1/(1+k/20000) is chosen

to satisfy the conditions in (2) with the same values of h1,

h2, α , and ε in the fixed sampling HGO. Initial conditions

for (41) are

x1(0) = 10, x2(0) = 10 (45)

Initial conditions for the fixed sampling HGOs are

q1 f
(0) = 0, q2 f

(0) = 0 (46)

Initial conditions for the HGOs with SA are

q1(0) = 0, q2(0) = 0 (47)

In Figs. 1 and 2, the plant states x1 and x2 generated by the

deterministic ODE (38), and estimates x̂1 and x̂2 generated

by the fixed sampling HGO, and x̂1 and x̂2 generated by the

HGO with SA are plotted.
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Fig. 1. Trajectories x1 (the top) generated by the deterministic ODE
(38), x̂1 (the middle) generated by the fixed sampling HGO, and x̂1

(the bottom) generated by the HGO with SA.
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Fig. 2. Trajectories x2 (the top) generated by the deterministic ODE
(38), x̂2 (the middle) generated by the fixed sampling HGO, and x̂2

(the bottom) generated by the HGO with SA.

Figs. 1 and 2 show that trajectories of the solution of

the stochastic difference equation with measurement noise

asymptotically follows trajectories of the solution of the

deterministic ODE. Figs. 3 and 4 show the estimation error

e1 = x1− x̂1 generated by the fixed-sampling and SA, respec-

tively. Figs. 5 and 6 show the estimation error e2 = x2 − x̂2

generated by the fixed-sampling and SA, respectively. The

error trajectories in Figs. 4 and 6 are decreasing while

the error trajectories in Figs. 3 and 5 remain with non-

decreasing fluctuations.

VII. CONCLUSIONS AND FUTURE WORK

The HGOs have intrinsic merits: a fast regeneration of

states and robustness to uncertainties through high gains.

However, under measurement noise, the high gains degrade

the performance of the HGOs due to amplifying the mea-

surement noise. In this paper, while reserving the intrinsic

merits of the HGOs, the effect of measurement noise was

coped with by using SA. Regularity conditions for the ODE

method were shown to be satisfied. Stability analysis of

the full system was fulfilled. Simulation results support the

validity of the proposed method.

For future work, we will investigate the HGO under

output feedback control and analyze stability of the closed-

loop system.
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