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Driving Assistant Companion with Voice Interface
using Long Short-Term Memory Networks

Jehyun Park, Hojoon Son, Jisuk Lee, and Jongeun Choi

Abstract—In this paper, we propose a driving assistant com-
panion system that provides drivers with useful information
using a long short-term memory (LSTM) network in a data-
driven fashion. Our system can be viewed as an advanced driver-
assistance system (ADAS) for faster learning and better driving.
The assistant companion predicts upcoming events on the road by
using real-time sensory measurements from range finding sensors
and provides informative narrations to enhance learnability and
driving performance. In contrast to a conventional navigation
system, our system predicts events from the online-stream of
sensory measurements without resorting to priors and map
information. To demonstrate the effectiveness of the proposed
system, we implemented our system on The Open Racing Car
Simulator (TORCS) and conducted an experimental study with
16 human drivers. Experimental results show that our system
enhanced learnability, driving performance, and reliability.

Index Terms—ADAS, Driving assistant companion, Learn-
ability, TORCS, LSTM, Voice assistance, Driving performance,
Reliability.

I. INTRODUCTION

Recently, car makers and information technology companies
such as Audi AG, NVIDIA Corp., Google Inc., and Intel Corp.
collaboratively strive to develop better advanced driver assis-
tance systems (ADAS) and autonomous driving [1], [2]. ADAS
are developed to assist a driver for convenience, safety, and
performance by fusing various sensory measurements from
LiDAR, radar, vision sensors, etc. [3]. For example, they may
recognize road signs from the vision data, such as speed limits
and warnings that can be overlooked while driving to improve
safety [4], [5]. The benefits of ADAS implementations are
potentially considerable because of a significant decrease in
human suffering, economical cost and pollution [6]. There
have been various studies showing that ADAS improves driv-
ing performance. F. Biral et al. [7] combined user’s preferred
driving style and safety margins into an ADAS’s module for
optimal reference maneuver computation. For safety on driv-
ing, there are physical and visual requirements such as keeping
your hands on the steering wheel and consistently looking
ahead [8], [9]. Real-time driving assistance through a voice
interface is applicable under such constraints in dynamically
changing environments. To this end, smart voice assistant
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systems such as Alexa have begun to be applied to ADAS
by several car makers [10]. Alexa is an intelligent personal
assistant which can provide various services with a voice
user interface alone [11]. A voice assistance such as ‘Release
throttle’, ‘Brake smoothly’, or ‘Brake sharply’, depending on
the vehicle speed, the distance between the vehicle and the
traffic signal, etc., is shown to save up fuel consumption up to
25% [12]. In addition, cognitive and sensory declines in the
elderly people might impact on the ability to drive [13], where
ADAS with a voice interface might be useful and effective.

In this paper, we consider a problem of building an ADAS
with a voice interface for drivers to learn and perform better
on a challenging driving task. We propose a driving assistant
companion system as an ADAS that enables to improve
driver’s learnability and performance by providing the driver
with useful information through a voice interface in real-time.
The connectedness through a voice interface will provide a
psychological stability [14], which might provide a compan-
ionship. The companionship plays an important role during
the long-term use of intelligent systems with intimacy.

We propose to use a long short-term memory (LSTM)
neural network in fusing environmental sensory measurements
and in generating appropriate responses in real-time. The
LSTM networks have been shown to be successful to analyze
time-series data for detecting anomalies in ECG signals [15],
[16] and automobile control network data [17].

The contributions of the paper are as follows. Firstly, to
demonstrate the capability of our assistant driving system,
we implemented our system using The Open Racing Car
Simulator (TORCS). For practicality, we choose 19 range
finding sensors (in TORCS), each of which returns the dis-
tance between the track edge and the ego-vehicle within a
range of 200 meters. Note that our system uses only range
finding sensor measurements, therefore it is applicable in
environments without priors and map information. Next, the
LSTM neural network was used to predict particular driving
situations. The LSTM structure is designed to receive the
sensory measurements as an input value to classify situations
of interest. To compute the prediction, we trained the LSTM
model with the sensory measurements in manually labeled
situations to obtain learned weights. While driving, our trained
model successfully predicts events in real-time in a dynamic
environment, and the classification results are reported in
this paper. Most importantly, to evaluate our approach in an
effective manner, we designed an experiment study with a
challenging task using a control delay and a difficult track
containing multiple corners. We used Mann-Whitney U-test to
show the increased performance and reliability as compared to
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Fig. 1. Optimal path (record line).

ones from the control group without our system. The paper is
organized as follows. In Section 2, we explain the experimental
design and how the driving assistant companion system assists
a novice driver. Section 3 presents how we build our driving
assistant companion system using learned weights through the
LSTM network to generate prediction. Section 4 presents the
experiment design and its results are shown in Section 5. We
discuss the results in Section 6 and concluding remarks are
shown in Section 7.

II. METHOD OF ASSISTANCE

A. Challenging Driving Task

We demonstrate our approach using TORCS. Due to its
openness, modularity, and extensibility, TORCS has been
adopted as a framework for many research projects [18],
[19], [20]. While driving on TORCS, our system extracts
sensory measurements and deliver appropriate responses to a
driver through a speaker. In order to test capability of our
system effectively, we designed a challenging driving task.
Firstly, we designed a testing track from the TORCS-based
driving game with many corners that requires skillful driving
such that the performance depends on how well a driver
passes multiple corners. Next, we inserted a control delay (0.2
sec) between the control input of the driver and the game
system to make the task challenging as shown in Fig. 3.
Delayed driving control responses are typical processes that
will impair driving performance as often caused by alcohol
and drugs [21]. Furthermore, cognitive and sensory declines
in the elderly population might be modeled by adding a delay
in the feedback loop [13].

B. Classified Situational Events and the Voice Assistance

In this section, we explain how we classify situational events
and how we guide the optimal path via a voice interface. To
successfully cope with the corners, the optimal path is one that
minimizes the time spent through the corner to maximize the
overall speed. The optimal path is that the driver starts turning
at the turn-in point (Fig. 1) and comes inward at the middle
of the curve to pass the apex (Fig. 1). The driver then exits
to the outside of the curve, at the track-out point (Fig. 1). As
you follow the optimal path [22], you can maximize the radius

Fig. 2. Snapshots of different situational events. The corresponding narrations
are given by (a) Stay left (b) Turn right (c) Stay right (d) Turn left (e)
Accelerate (f) Be careful.

of the curvature to pass the curve at the maximally possible
speed. To guide the optimal path, when the companion predicts
a right hand curve is coming, it speaks out ‘Stay left’ (Fig.
2-(a)) to pass the turn-in point. If a driver is about to be at
the turn-in point of the right hand curve, it speaks out ‘Turn
right’ (Fig. 2-(b)) to approach the apex. When the companion
predicts a left hand curve, the appropriate voice assistance
can be applied in a symmetrical way. In addition, if a driver
is on a straight track, the companion speaks out ‘Accelerate’
(Fig. 2-(e)). Finally, when the driver is on the verge of crash,
the companion speaks out ‘Be careful’ (Fig. 2-(f)). Therefore
these voice information will induce the player’s learnability
and performance towards optimality.

III. MACHINE LEARNING FOR CLASSIFICATION

To train our machine learning algorithm for classifying the
driving situational events, we collected sensory measurement
data under 6 different classes as in Fig. 2. Table I shows
the name of each class, which is defined according to the
narration for each situation. With the collected situational data
and the corresponding classes, we trained the LSTM network
(Fig. 3). The LSTM network is powerful to deal with the
time-series data in a very fast dynamic environment such as
racing games [23]. The LSTM network training is performed
in offline (Fig. 3). Finally, we build an algorithm to classify the
current situation with the given online sensory measurements
in TORCS. In order to achieve the optimal performance, it is
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TABLE I
CLASS LABEL DEFINITION

Narration for situation Class
Stay left SL

Turn right TR
Stay right SR
Turn left TL

Accelerate AC
Be careful BC

Fig. 3. The flowchart of the training procedure.

important not only to classify exactly what the current situation
is, but also to foresee what will happen in the future. The
class SL and SR foresee that the curved track is coming. In
other words, the classes SL and SR will be trained by the
time-shifted, time-series data, which are initially used for the
classes TR and TL.

A. LSTM Model used for Classification

In this section, we explain the LSTM model that will be
trained to classify and predict the situational events. The
LSTM network solves the vanishing gradient problem, which
pertains to the loss of information with time due to decaying
gradient values [16]. A conventional LSTM network has three
layers, viz. a hidden layer, an LSTM layer, and an output
layer [16]. Hidden and output layers are non-recurrent and
have multiple units. The LSTM layer is recurrent and has its
memory blocks which includes multiple cells [24]. Our LSTM
network has a hidden layer, an output layer, and two LSTM
layers, which is called a deep LSTM network [16].

B. Model Selection and Network Structure

With the collected situational data and the corresponding
classes, we tested the LSTM network with the different
number of LSTM layers for model validation. Based on 200
iterations, the average accuracy using 10-fold cross-validation
was 91.85% for one layer, 98.27% for two, 98.35% for three,
and 96.10% for four layers. We decided that it is more

Fig. 4. The LSTM network model used to classify and predict the situational
events.

appropriate to use two LSTM layers by the law of parsimony
(i.e., Occam’s razor) because we already had enough accuracy
with two layers. Furthermore, the number of nodes in the input
and output layers are determined with appropriate dimensions
based on the size of the input data and the number of classes.
The number of nodes in the hidden layer takes into account
the number of the input nodes and is determined to minimize
the loss function. Finally, the learning rate is tuned to be a bit
low in order to stabilize the learning process (Fig. 6).

In our model, the input data sequence is transformed by
a hidden layer that has 32 units. The data from the hidden
layer are fed into the LSTM layers. Each LSTM layer has five
memory blocks, which include 32 cells each. The data from
the LSTM layers are transformed by an output layer that has
6 units. In summary, Fig. 4 shows our LSTM network model.
In what follows, we explain the cell structure of the LSTM
layers. A cell of the LSTM layers is a chained structure. There
are four parts. The first part is to decide what information to
forget from the cell state.

ft = σ(Wfht−1 +Wfxt + bf ), (1)

where ft is the forget gate activation vector at time t, the
number of the hidden nodes is denoted by p, σ is a logistic
sigmoid function, Wf is the matrix of weights on the input
from the forget gate, ht is the output at time t, xt is the input
sequence, and bf is the forget gate bias vector. The second
part is to decide what new information we store in the cell
state c.

it = σ(Wiht−1 +Wixt] + bi), (2)

c̃t = tanh(Wcht−1 +Wcxt + bc), (3)

where it is the input gate activation vector at time t, Wi is
the matrix of weights to the input from the input gate, bi is
the input gate bias vector, Wc is the matrix of weights to the
input from the cell, c̃t is the vector of new candidate values,
and bc is the cell state bias vector. The third part is to update
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Fig. 5. A chain structured LSTM cell.

the cell value from the old cell state value, i.e., from ct−1 into
the new cell state ct at time t.

ct = ft � ct−1 + it � c̃t, (4)

where � is the element-wise product operator between vectors.
Finally, we define the output gate ot and the output ht at time t.

ot = σ(Woht−1 +Woxt + bo), (5)

ht = ot � tanh(ct), (6)

ot is the output gate activation vector, Wo is the matrix of
weights on the input from the output gate, and bo is the output
gate bias vector. As shown in Fig. 4, a training data matrix D ∈
Rm×n is multiplied by the hidden weight matrix Whidden ∈
Rn×o , where m, n, and o denote the numbers of time-step,
sensory measurements, and nodes in the hidden layer, which
are 5, 19, 32 in our model, respectively. A constant bias is
added to it in a element-wise manner and the resulted matrix
is fed into a network of two LSTM layers (or cells) as shown
in Fig. 4. The output matrix OLSTM ∈ R1×o of the network
of two LSTM layers is multiplied by the output weight matrix
Woutput ∈ Ro×p and with an added bias vector boutput, we
obtain the score matrix

s := OLSTMWoutput + boutput ∈ Rp, (7)

where p denotes the number of class, which is 6 in our model.
Each value of s is converted to the probability using the
softmax function [25]. The softmax transformed value is given
by

pi :=
esi∑
esi

, i ∈ {1, 2, · · · , p}. (8)

C. Data Collection for Machine Learning

For our classification problem, we need to collect and store
the enough data for each situational event so that the LSTM
network can learn. Once every 0.2 seconds, we collect the
sensory measurements to create a row vector x` ∈ R1×n at
each time step `, where n = 19. x` contains n range finding
sensor measurements. The i-th element is the distance between
the track edge and the car measured by the i-th sensor. Sensors
are distributed 10 degrees apart each other in front of the
vehicle. We then cumulate them into X` by

X` := X`−1‖x` ∈ R`×n, ` = 1, 2, · · · , (9)

by concatenating x` to X`−1, where the concatenation operator
is denoted by ‖ and defined by X‖Y = [XTY T ]T .

In order to collect the data during a specific time interval for
each situation, we assigned 6 keyboard keys for each situation
using a Python module that detects a keyboard input. Keyboard
keys act like on/off switches. The data concatenating cycle
runs only when the keyboard input is initialized. Pressing
the same key terminates the data concatenating cycle and
terminates the data collection. In addition, other keys operate
individually, so the data are collected separately for each class.

If a specific situation occurs while driving the car, the key
assigned to the situation is pressed to start the data collection.
After a certain period of time when the situation is over, the
same key is pressed to stop collecting the data.

By repeating this process, we collected the training and
test data sets for the corresponding classes SL, TR, SR,
TL, AC, and BC, (with the dimensions of ` × n, i.e.,
3430 × 19, 2565 × 19, 1850 × 19, 1360 × 19, 1970 × 19, and
1535×19), respectively. To better classify the situational event,
the LSTM network needs the time-series data of several time
steps rather than at each sampling time. To train and predict
the event with a time-windowed data during the last 1 sec., all
the collected measurements from the range finders are time-
windowed into a data matrix D` ∈ Rm×n (m = 5, n = 19) at
time `.

D. Training for Classification Learning

Each of the data matrices is labeled with one of p true class
vectors

c
(1)
1×p, · · · , c

(p)
1×p ∈ R1×p, (10)

where p = 6 according to the situational events, such that c(j)1×p

has all zeros except 1 at the j-th entry for all j ∈ {1, 2, · · · , p}.
Therefore we have that

c
(j)
i = δij =

{
0 if i 6= j,

1 if i = j,
(11)

where δij is the Kronecker delta. The weight matrices and
biases (together denoted by W ) in the LSTM network (Fig. 4)
are updated in every iteration using a gradient descent method
(i.e., back propagation) to reduce the total loss function that is
the sum of the cross entropy function and the L2 loss function
[26].

Wk+1 =Wk − λk∇(H(Wk) + λr‖Wk‖2), (12)

where λk, λr, and H are the learning rate, the regularization
coefficient, and the cross-entropy function respectively. The
cross entropy function is given by

H(pi, c
(j)
i ) := −

∑
i

c
(j)
i log(pi), i ∈ {1, 2, · · · , p},

= −
∑
i

δij log(pi), i ∈ {1, 2, · · · , p}.
(13)

Figure 6 shows the total training loss over 10,000 iterations
and the total loss is reduced as the number of iterations
increases. The total training loss at the last iteration is 0.0874.
After the data-driven learning with the LSTM network, the
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Fig. 6. Training loss vs. iterations.

final weight matrices and biases are used for classifying the
situational events during the game in real-time.

In order to provide a better service, we adjusted the timing
as well as classifying the situation. The companion speaks
once at the beginning so that the driver in the same situation is
not repeatedly reminded until the driver encounters another sit-
uation. If our system confidently predicts a situation, it speaks
only once until another situation is confidently predicted. In
addition, we used a specific value as a threshold to provide
voice services only when the probability for each situation
exceeds that threshold. The threshold is set such that the driver
receives more accurate and reliable voice services. Therefore,
the companion does not speak unless the threshold exceeds
the certain value. In terms of the computation time, it takes
72.21 seconds to perform 1,000 iterations offline training and
0.24 seconds to predict the situation online once the sensory
measurements come in. Details of the workstation used in this
research are described in Section 4.

IV. EXPERIMENTAL STUDY

A. Setup

As shown in Fig. 7, the experimental setup consists of
a keyboard, a speaker, a human driver and the modified
TORCS game containing our trained LSTM network and a
voice interface. The human subject drives the ego-vehicle, i.e.,
a racing car by using the keyboard arrows. Each arrow is
assigned to positive acceleration, negative acceleration, and
steering. The monitor in Fig. 7 displays the current driving
situation to the driver, and our driving assistant companion
informs the driver through a speaker what driving should
be done in the current driving situation. The human driver
then drives the car in the modified TORCS game with the
help of the voice assistance to minimize the lap time. All
experiments were performed on a workstation equipped with
16GB RAM, Intel Core i5-7600 CPU@3.5GHz running 64-bit
Ubuntu 16.04, and GeForce GTX 1050.

Fig. 7. The experimental setup that consists of a modified TORCS game, a
keyboard controller, a speaker and a human driver.

B. Procedure

A total of 16 human subjects between the ages of 21 and
27 participated in the experimental study. The subjects are
randomly divided into two groups. The group without the
voice assistance consist of 6 males and 2 females. This group
is a control group and is called Group 1. The other group with
the voice assistance consists of 6 males and 2 females. This
group is called Group 2. All participants are newcomers to the
TORCS game. All subjects drive 12 laps in the game. In what
follows, we describe the experimental procedure.

Intro: In the first three laps, both groups play the TORCS
game without the voice assistance just to be familiar
with the game.

Train: During the next 7 laps, Group 2 is provided with the
voice assistance to see the efficacy of our assistant
companion as compared to Group 1. This period is
called the training section.

Test: The last two laps, both groups play without the
voice assistance to gauge the performances after the
training section.

The driving performance is rated by the total lap-time. The
lap time can be increased if there is a crash during driving or
if the driver follows a non-optimal path [22].

C. Statistical Analysis Method

We use the Mann-Whitney U-test to determine the correla-
tion between the results of the two groups. This is a statistical
test that compares two independent groups when the sample
size of the group is less than 30 and the normality is not met
[27]. The p-value used in this test will determine whether the
difference between the two groups is significant.

V. RESULTS

A. Classification Results

In this section, we calculate the accuracy, the precision and
the recall for our multi-class classification problem solved in
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TABLE II
CONFUSION MATRIX FOR LSTM NETWORK CLASSIFIER

True
class

Predicted class
SL TR SR TL AC BC

SL 57482 44 322 1 551 0
TR 482 39146 9 225 38 100
SR 1146 38 25452 389 975 0
TL 54 132 913 19634 3 64
AC 363 1 57 1 33178 0
BC 0 5 0 269 0 22526

TABLE III
PRECISION AND RECALL

Class Precision (%) Recall (%)
SL 96.6 98.4
TR 99.4 97.9
SR 95.1 90.9
TL 95.7 94.4
AC 95.5 98.7
BC 99.3 98.8

Section III. The accuracy is the correct classification rate. The
accuracy is defined as

Accuracy :=

∑
TPi

Total # of data
× 100(%), (14)

where TP denotes the true positive and i denotes the index
of the class.

The precision is an agreement of the data class label with
that of classification [28]. The precision is defined as

Precisionj :=
TPj

FPi + TPj
× 100(%), (15)

where FP denotes the false positive and j denotes the column
index of the confusion matrix.

The recall is the effectiveness of the classifier to identify
the class label [28]. The recall is defined as

Recallk :=
TPk

FNk + TPk
× 100(%), (16)

where FN denotes the false negative and k denotes the row
index of the confusion matrix. Table II shows the confusion
matrix obtained by the classification results using the LSTM
network on the test data set. The total number of the clas-
sification tests is 203, 600. Table III demonstrates the good
performance of the proposed LSTM network in terms of the
precision and recall values for all classes.

B. Experimental results

To investigate whether there is an initial correlation between
lap times from two groups, we averaged individual lap times
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Fig. 8. Average lap times vs laps of each group

from lap 1 to lap 3 and then calculate the p-value via Mann-
Whitney U-test. The p-value (two tail) is 0.8336 (> 0.05) and
does not establish an initial correlation between lap times from
two groups.

1) Hypothesis I (Performance enhancement): The first hy-
pothesis we consider is that the group (Group 2) with the voice
assistance performs better than the control group (Group 1).
To test the hypothesis, we average the lap times for each lap
over subjects per each group as shown in Fig. 8. Note that
from lap 4 to lap 10, i.e., the training section, the driving
assistant companion system applies to Group 2. Figure 8
clearly shows that Group 2 performs better than Group 1 at the
training section. The averaged lap time in the training section
is 147.30 sec for Group 1 and 130.95 sec for Group 2. The p-
value (two tailed) through Mann-Whitney U-test in the training
section is 0.0181 (< 0.05). Therefore, the difference of the
average lap times between two groups in the training section
is statistically significant. The first hypothesis is supported by
the experimental evidence.

2) Hypothesis II (Reliability): The second hypothesis we
consider is that the performance of the group with voice
assistance (Group 2) is more reliable than that of the control
group (Group 1). We show the standard deviation error
bars between the subjects’ lap times for each lap to see
the variability of the lap times of the subjects. When the
variability is low, the performance reliability is high. The
standard deviation is computed by the following formula.

S :=

√√√√ 1

N − 1

N∑
i=1

|Ai − µ|2, (17)

where S is the standard deviation, N is the number of subjects
in each lap, Ai is the lap time of each subject, and µ is the
average lap time. Since there is a difference in the help of
assistive companion during the training section, it is necessary
to review the variability during that period to gauge reliability.
Figures 9 and 10 show that lap times of Group 2 are more
reliable than those of Group 1.
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Fig. 10. Means and standard deviations (±σ) of Group 2

We consider the standard deviations as new random vari-
ables for the U-test. The means of standard deviations at
the training section are 28.11 and 15.418 in Groups 1 and
2, respectively. We analyze the difference of the reliability
between two groups by using U-test with standard deviations.
The p-value for the data in the training section is 0.0350
(< 0.05). Therefore, the difference of the standard deviations
in the training section between the two groups is statistically
significant. The second hypothesis is also supported by the
experimental evidence.

3) Learning Curve: Figure 11 illustrates the fitted learning
curve [29] for Group 1, Group 2, and all subjects. All curve
fittings were performed with the minimum root mean square
(RMS) error using the power law. The R-square values are
0.72, 0.58, and 0.83 for Group 1, Group 2, and all subjects,
respectively.

The learning rate [29], [30] is defined as

Learning rate :=
Ta
Tb
× 100(%), (18)

Fig. 11. Learning curves of the total subjects and each group

where Ta is the lap time after the training, and Tb is the lap
time before the training. When considering only the training
section, the learning rate of Group 1 is 3.8% and that of
Group 2 is 6.6%. Overall, from lap 1 to lap 12, the learning
rate of Group 1 is 19.49%. The learning rate of Group 2 is
21.96% which is larger than that of Group 1. Therefore, we
have a consistent tendency of having higher learning rates from
Group 2.

The learning speeds [29], [30] can be defined as follows.

Learning speed :=
Tth
Lth

, (19)

where Tth is the threshold lap time, and Lth is the number of
laps to reach the threshold lap time. The threshold lap time can
be determined from the learning curve of all subjects [30]. The
learning rate of the total learning curve is 20.59%, and its 80%
is 16.47% [30]. The lap time at 80% of the total learning rate
is determined as the threshold lap time. From our data, Tth is
141.16 seconds. We assume the lap as a continuous value and
obtain the lap of each group to reach the threshold lap time.
Group 2 takes 3.44 laps (Lth) to reach Tth, and Group 1 takes
10.66 laps (Lth). Hence, Group 2 shows a faster learning speed
of 41.03 as compared to that of Group 1 (13.24).

VI. DISCUSSION
Our driving assistant companion uses the LSTM network

with online stream of range finding sensor measurements
in order to classify situational events. It shows the better
accuracy (96.96%) than that of IB1 algorithm with global
positioning system (GPS) based mobile sensors [31] (89.85%).
Mu noz-Organero et al. [12] provides the driver with the voice
assistance on how to release accelerator pedal to reduce fuel
consumption. Mu noz-Organero’s work is similar to ours in
a sense of the voice assistance. However, they use a traffic
signal detecting algorithm with the stream of the vision data
while we use the LSTM network with the stream of the range
finder measurements.

In addition, we tried classification with the same dataset
using an SVM using linear kernels, one of the traditional
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Fig. 12. Means and standard deviations (±σ) of Group 2 without an outlier

classification methods in machine learning. The accuracy of
the SVM model was 83% while that of our LSTM network
was 98%, which shows the better performance. The LSTM
network shows the better results because it has ability to
process and predict time-series sequences without forgetting
unimportant information. The LSTM network achieves state-
of-the-art results in time-series problems [23].

The total number of collected data for classification learning
is 12,710. This is sufficient number for training our model that
is validated by using 10-fold cross-validation with the average
accuracy of 98.27% as shown in Section 3-B.

The experimental results present that the performance and
reliability of Group 2 outperform those of the control group.
Looking at Fig. 10, the standard deviations are small at laps 6,
7, 9, and 10, but unusually large at lap 8 due to an outlier. An
outlier with an abnormally slow lap time causes high average
lap time and the large standard deviation. Figure 12 illustrates
standard deviations of Group 2 without the outlier. In the
training section, the standard deviation is decreased after the
outlier is removed.

At the test period, i.e., laps 11 and 12 in Fig. 12, the
standard deviations and the average lap times increase again.
We suspect that the decreased performance and reliability
might be due to the evaluation anxiety [32]. Subjects with
high evaluation anxiety may show poor performance, resulting
in slower average lap times and bigger standard deviations.
Indeed, most of the subjects expressed that they felt a burden
of trying to be the best at the last two laps as the final test.

In Fig. 11, the difference in the learning speed might be due
to differences in applied learning factors [33]. The difference
may be due to the fact that two factors, multiple practice trials
and the voice assistance, are applied to Group 2 while only
the multiple practice trials are given to Group 1.

VII. CONCLUSIONS

In this paper, the LSTM network is used to compose a
driving assistance companion system using a voice inter-
face. It provides drivers with useful information to enhance

learnability, driving performance, and reliability. The range
finding sensor is used for real-time prediction without map
information. The experimental study is designed using the
TORCS to demonstrate the efficacy of the proposed assistant
companion.

Our assistant companion technology can be applied to
various problems in industry such as training programs for
automobiles, motorized vehicles, remotely controlled vehicles,
drones, and surgical robots. The future work is to apply our
assistant companion on a real car by using the LSTM network
with the real-time measurements from LiDAR sensors.
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