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Abstract: In this paper, we provide a stochastic adaptive sampling strategy for mobile sensor networks 
to estimate scalar fields over surveillance regions using kernel regression, which does not require a 
priori statistical knowledge of the field. Our approach builds on a Markov Chain Monte Carlo 
(MCMC) algorithm, viz., the fastest mixing Markov chain under a quantized finite state space, for ge-
nerating the optimal sampling probability distribution asymptotically. The proposed adaptive sampling 
algorithm for multiple mobile sensors is numerically evaluated under scalar fields. The comparison si-
mulation study with a random walk benchmark strategy demonstrates the excellent performance of the 
proposed scheme. 
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1. INTRODUCTION 
 
Due to recent global climate changes, there is a 

growing number of environmental scientists who are 
interested in monitoring changes in detrimental 
environmental variables such as harmful algal blooms 
and cyanobacteria in oceans, in lakes, and public water 
systems [1]. Monitoring hazardous materials could be 
needed in non-convex surveillance regions such as 
airports and public transportation [2]. Mobile sensor 
networks and robotic technology provide a viable 
solution to such environmental monitoring [3-7]. 
Adaptive sampling can be utilized by a mobile sensor 
network such that later sampling is optimally scheduled 
considering the earlier sampling to improve the quality 
of the prediction [4,5]. In practice, mobile sensor 
networks using parametric regression could be limited in 
the sense that they require a priori knowledge about the 
model structure of the scalar fields [3,8]. Mobile sensing 
agents using nonparametric Gaussian processes also 
require a priori knowledge on the covariance functions 
[6].  

To deal with the aforementioned problems, it is 
important to design theoretically-sound, adaptive sampl-

ing algorithms for mobile sensor networks using 
nonparametric regression such that they operate with no 
prior information about the scalar field. Due to the nature 
of the environmental monitoring, the difficulty of 
covering a large non-convex surveillance region by a 
limited number of mobile sensors with mobility 
constraints (such as range of movements and obstacles) 
has to be addressed as well.  

Kernel regression and local linear regression 
techniques [9,10] provide an effective way for mobile 
sensors to perform adaptive sampling without prior 
information about the field of interest. For instance, an 
adaptive sampling strategy based on the local linear 
regression for a robotic boat to reconstruct a field was 
developed in [7]. However, due to the nonparametric 
approach without a key statistical structure (such as a 
covariance function in a Gaussian process), kernel 
regression instead requires a large number of samples for 
a good level of prediction. The asymptotic properties of 
local linear regression for univariate and multivariate 
cases were investigated in [11-13]. The estimation results 
using local linear regression highly depend on the choice 
of bandwidths. A large bandwidth may cause a large bias 
whereas a small bandwidth may result in a large variance 
[14]. An effective bandwidth selector for local least 
squares regression was proposed in [10]. Plug-in 
bandwidths for multivariate kernel density estimation 
was introduced in [15]. The optimal bandwidths for 
multivariate local linear regression were established in 
[14]. Two classes of variable bandwidth selectors 
(balloon and sample-point selectors) for kernel density 
estimation which are more flexible as compared to the 
fixed bandwidths were introduced in [16]. In kernel 
regression, its sampling (continuous) probability 
distribution can be considered as a weighting function to 
be optimized for minimizing the estimation error. For a 
fixed number of sampling positions, it can be viewed as 
an optimal resource allocation problem. In this problem, 
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sampling positions have to be optimally allocated for the 
scalar field of interest such that the resulting kernel 
regression with the corresponding optimal variable 
bandwidths produces the minimal estimation error in 
average.  

A Markov Chain Monte Carlo (MCMC) algorithm 
such as Metropolis-Hastings and maximum-degree 
Markov chains [17] can be used to coordinate mobile 
agents to generate the optimal sampling (discrete) 
probability distribution in a mobility-constraints encoded 
graph. MCMC based stochastic rules to generate way-
points for the agents throughout their surveillance 
missions have been developed in [18]. In [19], a 
decentralized strategy was proposed to reallocate a 
swarm of robots to multiple tasks following a target 
distribution which is optimized for the fast convergence 
subject to transition constraints. The convergence rate of 
the Markov chain to the prescribed equilibrium 
probability distribution is related to the second largest 
eigenvalue modulus (SLEM) of the Laplacian matrix 
associated with the transition probability [18,20]. 
Finding the fastest mixing reversible Markov chain 
(FMRMC) on a given graph was successfully formulated 
as a convex optimization problem in [20].  

The contribution of the paper is as follows. First, we 
formulate and solve an optimal sampling problem for a 
set of target points to estimate an unknown scalar field 
over a (possibly non-convex) surveillance region using 
kernel regression. Next, we propose a stochastic adaptive 
sampling strategy for mobile sensor networks taking into 
account mobility constraints, and we show that it 
achieves the optimal sampling probability distribution 
asymptotically. Our approach builds on a MCMC 
algorithm, viz., the FMRMC, under a quantized finite 
state space for generating the optimal (discrete) 
probability distribution asymptotically. In particular, a 
partition of the surveillance region is generated to obtain 
a finite state space for a Markov chain. To design a 
Markov chain, an associated graph shall be constructed 
by taking into account mobility constraints of sensing 
robots. For a single mobile robot, in each iteration, the 
robot randomly moves to a neighboring partitioned cell 
by the FMRMC, and its sampling position is randomly 
selected within the selected cell according to the optimal 
(continuous) probability distribution. An adaptive 
sampling algorithm for multiple mobile sensors to cover 
a large surveillance region is designed and numerically 
simulated under scalar fields. The excellent performance 
of the proposed algorithm as compared to a random walk 
benchmark is demonstrated in the simulation study.  

This paper is organized as follows. In Section 2, local 
linear regression and its mean square error are reviewed. 
In Section 3, a concept of target positions and its 
associated optimal sampling distribution are introduced. 
A stochastic strategy for mobile sensors for the optimal 
sampling and its asymptotic convergence properties are 
presented in Section 4. Stochastic adaptive sampling for 
multiple robotic sensors over a large surveillance region 
is provided in Section 5. Section 6.1 provides numerical 
experiments to demonstrate the effectiveness of the 

proposed algorithm.  
Standard notation is used throughout the paper. Let 
,¡ 0 ,³¡ 0 ,>¡ ,¢ 0 ,³¢ 0>¢  denote, respectively, the 

sets of real, non-negative real, positive real, integer, non-
negative integer, and positive integer numbers. ÈA B  
and ÇA B  denote, respectively, the union and intersec-
tion of the sets A  and .B  Let ( )xE  and Var(x) 
denote, respectively, the expectation and the variance of 
x. Other notation will be explained in due course.  

 
2. LOCAL LINEAR REGRESSION 

 
In this section, we briefly review local linear 

regression and its bandwidth [13]. 
Let ( ) ( )

1{ }i i n
iX Y =,  be the collection of measurements 

from robotic sensors. ( ) ( )( )
1( )i ii T d

dX X X= , , ÎL ¡  is a 
sampling location, which is a random vector generated 
by a density function p(x), and ( )iY Î¡  is a scalar 
environmental variable of interest. Consider the follow-
ing multivariate regression model for the environmental 
scalar field 

( ) ( )( )i iY f X e= + ,  

where e  is independent of X (i) satisfying ( ) 0=E ò  and 
2Var( ) .e s=  Note that df :¡ a ¡  and 2 0s >  is 

the noise level. The local linear estimator of f at a given 
point 1( )T d

dx x x= , , ÎL ¡  is obtained by applying a 
first-order Taylor expansion of the function f at point x 
for all the data points in ( )

1{ }i n
iX =  and solving a least 

squares problem locally weighted by kernels. The 
estimator ˆ ( )f x  is the first element of 0(b b= , ,L  

1)T d
db +Î¡  that minimizes 

2
( ) ( ) ( )

0
1 1

( ) ( )
n d

i i i
j j j H

i j
Y X x K X xb b

= =

ì üï ï- - - - ,í ý
ï ïî þ

å å
 

where 1 2 1 2( ) ( )HK u H K H u- / - /=| |  with a bandwidth 
matrix 1 2 .d dH / ´Î¡  K is a symmetric, compactly 
supported, univariate probability kernel that satisfies 

( ) 1.K u du =ò  Hence, assuming that T
x x xX W X  is 

nonsingular, the local linear estimator is given by 

1
1

ˆ ( ) T T T
x x x x xf x H e X W X X W Y

-æ ö
ç ÷
è ø

; = ,  (1) 

where 
(1)

( )

1 ( )

1 ( )

T

x
n T

X x
X

X x

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

-
= ,

-

M M   (1) ( ) TnY Y Yé ù
ê úë û

= ,L  

{ }(1) ( )diag ( ) ( ) ,n
x H HW K X x K X x= - , , -L  and 

1
1 (1 0 0) .T de += , , , ÎL ¡  

Since p(x) is a density that generates {X(i)}, we have 
( ) 1,p x dx =ò ( )f xH  be the Hessian matrix of function 
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f (x). The asymptotic conditional mean squared error 
(MSE) at a point x in the domain of interest is given by 
[13] 

2 (1) ( )

2
2 2
21 2

1 1 2 2

ˆMSE( ) {[ ( ) ( )] }

( ) 1 ( )tr { ( )}
4( )

{ tr ( )}

n

f

p

x f x f x X X

R K K H x
n H p x

o n H H

s m
/

- - /

= - | , ,

= +
| |

+ | | + ,

L

H

E

 (2) 

where 2( ) ( ) ,R K K u du= ò  and 2 ( ) ( ) .TK I uu K u dum = ò  
The estimation quality highly depends on the selection 

of the bandwidth matrix. The bandwidth matrix in (2) is 
fixed for simplicity. In this paper, we use the so called 
balloon bandwidth selector in which the bandwidth is a 
function of x. The bandwidth matrix has been 
parameterized by 1 2 ( ) ( ) .H x h x I/ =  The optimal band-
width that minimizes the MSE can be obtained by 

1 ( 4)
2

2 2
2

( )( )
( ) ( )tr { ( )}

d

f

dR Kh x
np x K x

s
m

/ +
æ ö
ç ÷= .
ç ÷
è øH

 (3) 

In the next section, we introduce the concept of target 
positions and its associated optimal sampling distribution. 
 

3. OPTIMAL SAMPLING DISTRIBUTION 
 
In this paper, positions of interest will be referred to as 

target positions. The introduction of target positions is 
motivated by the fact that the potential environmental 
concerns should be monitored with a higher resolution. 
For instance, the target positions can be assigned at the 
interface of a factory and a lake, sewage systems, or 
polluted beaches. Thus, the introduction of target 
positions, which can be arbitrarily specified by a user, 
provides a flexible way to define a geometrical shape of 
a subregion of interest in a surveillance region. Without 
a priori knowledge on such concerns, we will take 
uniformly distributed grid points as target positions. 

According to the selected target positions =T  
( )

1{ } ,i n
iU =  we now quantize the region of interest 
dDÎ¡  into n finite sets so that the stochastic sampling 

strategy can be derived in a finite state space. For a given 
compact and closed region of interest D, we design a 
partition of D, denoted by Λ(D):= 1{ } ,n

i iD =
 which satisfies 

( )

1
Int Int for Int

n
i

i i j i
i

D D D D i j U D
=

= , Ç = Æ ¹ , Î ,U  

where Int A denotes the interior of A. Hence 1{ }n
i iD =  is 

a collection of nonempty subsets of D whose interior is 
disjoint and whose union is D. 

In our approach, the performance cost function is 
chosen to be the Average Mean Squared Error (AMSE) 
on n target positions given by 

( )

1

1AMSE MSE( )
n

i

i
U

n =
= .å  

By plugging in the optimal bandwidths that minimize 
MSE, the AMSE J(p) is obtained by 

2 ( 4)( )

2 2 ( )
1

tr { ( )}
( )

( )

dd in
f

i
i

U
J p c

n p U

/ +

=

æ ö
ç ÷:= ,
ç ÷
è ø

å
H

 (4) 

where c is a constant. 
Problem 1: The goal of optimal sampling is to 

minimize the AMSE by selecting an optimal continuous 
probability distribution from a family of continuously 
differentiable probability density functions p(x) with 

( ) 1
x D

p x dx
Î

= .ò  (5) 

Our proposed approach to solve Problem 1 is given as 
follows. From (4), we parameterize the probability 
distribution by ( )( ).i

ip p U:=  We also pre-select the 
weighted area of Di denoted by ωi, which provides the 
following constraint. 

( )
ix D

i
i

p x dx

p
w Î:= .

ò
 (6) 

Hence the probability of x being in Di is simply ωipi and 

1 1n
i ii pw

=
=å  is always satisfied due to (5). 

The optimal parameter set 1{ }n
i ip =
å  is derived in the 

following proposition. 
Proposition 2: Consider the following optimization 

1

minimize ( )

subject to 1
n

i i
i

J p c

pw
=

/

= .å
 

The optimal solution is given by 
2 ( 8) ( )1

4 ( 8) 2 ( 8) ( )
1

tr { ( )}

( ) tr { ( )}
i

j

i

d d i
f

i n d d d j
fj

U
p

U

w
w
w

/ +

/ + / +
=

= .
å

H

H

å  (7) 

Notice that ipå  is proportional to 2 ( 8) ( )tr { ( )}d d i
f U/ + H  

when .i j i jw w= ," ,  

Proof: Note that ( ) 0.J p ³  By introducing Lagrange 
multipliers λ, we define the Lagrange function as 

2 ( 4)( )

2 2
1 1

tr { ( )}
( ) 1

dd in n
f

i i
i ii

U
L p p

n p
l l w

/ +

= =

æ ö æ ö
ç ÷, = + - .ç ÷ç ÷ è øè ø

å å
H

 

Equation (7) is obtained by solving ( )p L pl l,Ñ , =0.   � 
We introduce the following definition. 
Definition 3: Consider a pair of a collection of target 

positions and its associated partition, i.e., ( ( )).D,LT  A 
continuously differentiable probability distribution that 
satisfies (6) and (7) will be referred to as an optimal 
sampling continuous probability distribution ( )p xå  
with respect to .T  
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4. STOCHASTIC STRATEGY FOR OPTIMAL 
SAMPLING 

 
In this section, we propose a stochastic strategy under 

which mobile sensors with mobility constraints can be 
coordinated to generate the optimal sampling probability 
distribution ( )p xå  in Definition 3 asymptotically. We 
first present a strategy and then prove its asymptotic 
convergence properties. 

Consider the quantized optimal discrete probability 
distribution 1( ) :T

np p p= , ,L  

( )
i

i i i x D
p p x dxp w

Î
:= = ,òå å  (8) 

where ωi is the weighted area of Di. Our stochastic rule 
consists of two steps. In the first step, while satisfying 
mobility constraints, a robotic sensor randomly moves to 
a cell, e.g., Di in a quantized state space to generate the 
discrete probability distribution π asymptotically. In the 
second step, when the robotic sensor is assigned to Di by 
the first step, its sampling position is randomly generated 
proportionally to the optimal sampling continuous 
probability distribution ( )p xå  over Di. 

To develop such a stochastic rule for the first step, we 
use a Markov Chain Monte Carlo (MCMC) algorithm 
[17] to randomly assign a mobile sensor over a 
partitioned region by synthesizing a Markov chain that 
has the target distribution π as its equilibrium distribution. 

Consider an undirected graph ( ):= ,G V E  with a 
vertex set {1 }n= , ,LV  and an edge set .Í ´E V V  
Each vertex is associated to a cell of the surveillance 
region D. Hence, Di is indexed by a vertex index .i ÎV  
The edge set E  shall be defined to reflect the mobility 
constraints of a mobile sensor and obstacles in the 
surveillance region. For instance, we could have 
( ) ,i j, ÎE  if ,i jD DÇ ¹ Æ  which means that if the 
two partitions are neighbors, there is an (undirected) 
edge between two corresponding vertices (see Fig. 1). 
We also assume that each vertex has a self-loop, i.e., 
( )i i, ÎE  for ,i" ÎV  which allows a mobile sensor to 

stay in the same cell with some probability. The state at 
time 0t ³ÎZ  is denoted by ( ) .q t ÎV  We define a 
Markov chain by a transition probability 0

n nP ´
³Î¡  as 

follows. 

Pr( ( 1) ( ) )) 0 ( )
Pr( ( 1) ( ) )) 0 ( )ij

q t j q t i i j
P

q t j q t i i j
+ = | = > , " , Î ;ì

:= í + = | = = , " , Ï .î

E

E
 

A Markov chain on a graph G  with the transition 
probability P is called reversible with respect to an 
equilibrium probability distribution π on G  if 

i ij j jiP P i jp p= , " , Î .V  

To maximize the rate of convergence to the target 
distribution π, we solve the fastest mixing reversible 
Markov chain (FMRMC) problem [20] in which the 
transition probability matrix P is designed to maximize 
the mixing rate of the reversible Markov chain. Hence, 
by the FMRMC, the associated discrete probability 
distribution on the vertices approaches to the equilibrium 
(optimal) probability distribution π as rapidly as possible. 

We now design the FMRMC that minimizes the 
second largest eigenvalue modulus (SLEM), which 
determines the mixing rate, by solving the following 
convex optimization problem [20]. 

1 2 1 2
2

minimize

subject to 0 1 1
0 ( )

T

T

ij

P rr

P P P P
P i j

/ - /P P -

³ , = , P = P
= , " , Ï ,E

 (9) 

where diag( ),pP = 1( ) ,T
nr p p= , ,L  the inequality 

0P ³  means element-wise (i.e., 0 )ijP i j³Î ," ,¡  and 
1 nÎ¡  is a vector of all ones. This optimization problem 
can be solved globally and efficiently using standard 
SDP solvers [20]. 

We summarize our stochastic strategy for optimal 
sampling by the following theorem. 

Theorem 4: Consider our stochastic strategy that 
consists of two steps: 
Step 1: Mobility among cells is driven by the FMRMC 
with the transition probability P obtained from (9) over 
the specified graph G  and the partition Λ(D). 
Step 2: Mobility within a cell is driven by random 
sampling proportionally to ( )p xå  in the assigned cell 
from Step 1, i.e., if  ( ) ,q t i=  then the sampling 

position ix DÎ  is randomly distributed by ( ) :i xp% å  

( )( )
( )

i

i
D

p xxp
p d

m
m m

Î

:= ,
ò

%
å

å
å

 (10) 

such that ( ) 1.
i

ix D
x dxp

Î
=ò % å  

A mobile sensor under this stochastic rule will then 
satisfy the mobility constraints and generate a sampling 
distribution that converges to the optimal continuous 
probability distribution ( )p xå  asymptotically. 

 

 
Fig. 1. A graph over a partition {Di} of D. 
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Proof: Consider a mobile sensor under this stochastic 
rule. The mobility constraints are satisfied since the edge 
set E  of the associated graph G  is constructed to 
reflect the mobility constraints. The discrete probability 
distribution generated by the FMRMC converges to π, 
which satisfies (8), i.e., ( )

i
i i i D

p p d
m

p w m m
Î

= = ,òå å  

i" ÎV  asymptotically. For Di, ,i" ÎV  the sampling 
probability distribution over Di for given q = i, converges 
to ( )i xp% å  asymptotically. Therefore, the sampling 
distribution p(x) converges to the optimal continuous 
probability distribution ( ) ( )i i x p xpp =% å å  for ix DÎ  
asymptotically.             � 

 
In the case when multiple mobile sensors are 

coordinated by the same Markov chain independently, 
the probabilistic collision avoidance capability of 
sampling positions of multiple mobile sensors is 
provided by the following proposition. 

Proposition 5: Suppose m sensors are assigned to Di, 
i.e., q(t) = i for all m sensors at time 0 .t >ÎZ  The 
probability of the collision of any two sampling points of 
mobile sensors is zero. 

Proof: Let Br[s] be a closed ball of radius r > 0 
centered at a point s defined by [ ] {r iB s x D x s:= Î | -P P  

}r£ .  The sampling position X of sensor k can occur any 
point .is DÎ  The probability that the sampling position 
Y of sensor l  belongs to a closed ball [ ]r iB s DÍ  is 

[ ]
Pr( [ ]) ( ) .

r
r iY B s

Y B s Y dYp
Î

Î = ò % å  Two random vari-

ables X, Y are independent, therefore, the probability that 
two sampling positions of sensors collide is 

[ ]0

[ ]0

Pr( ) lim ( ) ( )

lim ( ) ( ) 0
i r

i r

i is D Y B sr

i is D Y B sr

X Y X s Y dYdXp p

X s dX Y dYp p

Î Î®

Î Î®

= = =

= = = .

ò ò
ò ò

å å

å å

% %

% %
 

This argument can be extended for m sensors.     � 
 
In practice, robots with non-negligible volume will be 

coordinated to visit the assigned sampling points in 
sequence to avoid collision. 

This stochastic strategy for optimal sampling requires 
the knowledge of the Hessian matrix used in (7) for 
calculating 1{ }n

i ip =
å  to produce the optimal distribution 

π. One way to deal with this issue is to use the estimated 
Hessian matrix from a set of initially observed samples. 
 

5. STOCHASTIC ADAPTIVE SAMPLING 
 
In this section, we provide an adaptive sampling 

algorithm for a mobile sensor network to cope with a 
large surveillance region D with respect to the mobility 
range of sensors. In this case, it is necessary to use 
multiple mobile sensors that are distributed efficiently 
over D. Often an attempt to cover a relatively large area 
by a single mobile sensor yields an infeasibility in the 

optimization in (9). To address this problem, robotic 
sensor j will take charge of subregion j, denoted by Sj, 
which is defined by a union of its cells ,

jj ii
S D

Î
:=U I

 

where jI  is the vertex set of the connected subgraph 

( )j j j= ,G I E  generated by Sj considering mobility 
constraints of robot j. We also constrain this collection of 
subregions to be a partition of D, i.e., 

1
Int Int for

m

i j
i

D S S S j
=

= , Ç = Æ ¹ .l lU  

The key constraint of designing subregions is that the 
desired sampling probability over each subregion has to 
be equal to 1/m with some small quantization error. In 
this way, the equilibrium distributions of m FMRMC’s 
will produce the near-optimal discrete sampling 
distribution. A simplest method of partitioning the region 
D into 2km = , 0k >ÎZ  subregions 1{ }m

j jS =  is shown 
in Table 1. However, this approach can be used only 
when m is the power of 2 and the quantization error is 
not guaranteed to be minimal. On the other hand, any 
appropriate equitable partitioning algorithm such as a 
quantized gossip consensus algorithm [21] can be 
applied for equitable partitioning of the region D into m 
subregions 1{ } .m

j jS =  
We now provide a stochastic adaptive sampling 

algorithm for multiple robotic sensors as described in 
Table 2.  
 

6. EXAMPLES 
 
6.1. Simulated examples 

We consider a scenario in which m = 4 mobile sensors 
perform the estimation task. Two static scalar fields to be 
estimated are shown in Fig. 2. The analytical expression 
of the scalar fields in Fig. 2(a) and (b) are 

2 2
1 2

1
( 4 5) ( 5 5)

( ) exp
10

x xf x
ì ü- . + - .ï ï= - ,í ý
ï ïî þ

 

and 

2 1 2
1( ) sin(0 1 )sin(0 2 )
2

f x x xp p= . . ,  

respectively. The surveillance region D is given by 
2(0 10) .D = ,  The measurement noise level σ is chosen 

Table 1. The simplest equitable partitioning algorithm. 

Input: 
(1) The partition Λ(D)  
(2) The number of agents (subregions) m = 2k  
(3) The optimal discrete probability distribution π 

Output: The partition 1{ }m
j jS =   

1: for i = 1:k do 
2:  Divide each region (the entire region when i = 1) into 
  subregions over which has the similar sampling 
  probability. 
3: end for 
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to be 0.1 (about 10 % of the maximal value changes in 
the fields). We consider 10×10 grid points on D as the 
target positions. The region D is partitioned into n =100 
cells Di, each of which has a pre-selected value ωi =1. At 
time t = 0, N0 = 100 evenly distributed initial samples are 
collected by these m mobile sensors, which are used for 
estimating the Hessian matrix ( ).f xH  Then each robot 
collects N =10 samples during each time period based on 
the proposed algorithm in Table 2. The maximal range of 
the movement is set to be 3. The field D is partitioned 
into m rectangular subregions 1{ }m

j jS =  such that the 
desired sampling probability over each subregion is 
nearly equal to 1/4. A benchmark is created by a 
stochastic sampling scheme in which each of m robotic 
sensors uses a random walk to choose a cell to travel in 
the finite state space and the sampling position is 
uniformly distributed inside the cell. Each of m mobile 
sensors is launched at the one of the four vertex cells in 
D for both proposed and benchmark schemes. To have a 
fair comparision, the same parameters for the mobility 
constraints and the initial sampling positions are used for 

our scheme as well as the benchmark. To evaluate our 
scheme, the simulations of two schemes are repeated 100 
times for both fields and the results of our scheme are 
compared against those of the benchmark in terms of the 
Average Squared Error (ASE):  

( )2( ) ( )

1

1 ˆ( ) ( ) ,
n

i i

i
ASE f U f U

n =
= -å  

The sample means of the ASE (AMSE) for our 
adaptive sampling (blue circles) and the benchmark (red 
squares) along with the corresponding one standard 
deviation bars for f1(x) and f2(x) are shown in Figs. 3(a) 
and (b), respectively. By the nature of the kernel 
regression, the sample mean of ASE decreases as the 
number of samples increases for both schemes. It is 
important to notice that the proposed scheme decreases 
the AMSE with a faster rate than the random walk 
scheme at the beginning, which can be useful for the 
under-sampled data. The averages of the estimated 
densities of 500 samples for f1(x) and f2(x) over 100 trials 
are shown in Figs. 4 and 5, respectively. It can be clearly 
seen that the density is high at the part of the field where 
there are large changes in scalar values. The percentage 
improvements of the AMSE using the adaptive sampling 
scheme with respect to the random walk benchmark 
scheme are about 24 % and 20 % with 500 samples for 
f1(x) and f2(x), respectively.  

Recall that our objective was to reduce the ASE at 
target positions ( )

1{ } .i n
iU =  However, the kernel regres-

Table 2. Stochastic adaptive sampling for multi-robots. 

Input: 

(1) Target positions T  
(2) The partition Λ(D) and the weighted areas 

1{ }n
i iw =   

(3) The number of agents m  
(4) The number of initial samples N0  
(5) The number of transitions N in each time period  
(6) Stop time tmax 

Output: The estimated field ˆ ( )f x  at each time step  
1: Mobile agents take N0 initial samples at t = 0. 
2: Estimate the Hessian matrix ( )f xH  at .T  
3: Calculate the optimal probability distribution ipå  using 

(6) and (7).  
4: the region D into m subregions 1{ }m

j jS =  for m mobile 
sensors such that desired sampling probability over each 
subregion is equal to 1/m with some minimal quantization 
error.  

5: for each subregion j do  
6: Calculate the equilibrium probability distribution π( j ) 

using (8).  
7: Find the transition probability matrix P( j ) using the 

FMRMC optimization in (9).  
8: end for  
9: repeat 
10:  Estimate the density function p(x) using a fixed 

 bandwidth hp.  
11:  Calculate the optimal bandwidth hopt using (3).  
12:  Estimate the field ˆ ( )f x  at target positions 
  ( )

1{ }i n
iU =  using local linear regression in (1).  

13:  for ( 1 )k k N k= ; <= ; + +  do 
14:  Update sampling positions of sensors according 
  to the transition probability matrix P( j ) and 
  { ( ) }ji x i Ip | Î% å  in (10).  
15:  Take new samples at new locations.  
16:  end for 
17:  Set t = t + 1.  
18: until t = tmax 
 

(a)                    (b) 
Fig. 2. The scalar fields (a) f1(x) and (b) f2(x) used in the 

simulation study. 
 

 
(a)                    (b) 

Fig. 3. Simulation results for the adaptive sampling 
scheme as compared to the random walk scheme 
for (a) f1(x) and (b) f2(x). 
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sion approach in (1) with the optimal kernel bandwidth 
in (3) can estimate the scalar field at any point in D, 
which is different from the pre-selected target positions. 
Hence, we estimate the field f1(x) at a set of 50×50 grid 
points over (0.5, 9.5)2. The estimated fields 1

ˆ ( )xf  with 
500 samples using the random walk scheme and the 
adaptive sampling scheme are shown in Figs. 6(a) and 
(b), respectively. Although the objective was to minimize 
the estimation error at finite target positions, i.e., 10×10 
grid points, the estimated scalar values at the new 50×50 
grid points using adaptive sampling strategy is very 
similar to the true field as shown in Fig. 2(a). Notice also 
that the kernel regression technique does not produce 
good estimates on the points near the boundary in 
general.  

To demonstrate that our scheme can be used in a non-
convex region, we consider a scenario in which only a 
single mobile sensor (i.e., m =1) performs the estimation 
of a scalar field in a non-convex surveillance region as 
shown in Fig. 7(a). The analytical expression of the 
scalar field is the same as f1(x). The non-convex 
surveillance region D is given by D = (0,5)2 \ (0,1)×(0,2),  
where \ denotes the set subtraction. The region D is 
partitioned into n = 23 cells Di, each of which has a pre-
selected value ωi = 1. At time t = 0, N0 = 23 evenly 
distributed initial samples are collected by the mobile 
sensors, which are used for estimating the Hessian matrix 

( ).f xH  Then the robot collects N =10 samples during 
each time period based on the proposed algorithm. The 
maximal range of the movement is set to be 3. A 
benchmark is created by a stochastic sampling scheme in 
which a robotic sensor uses a random walk to choose a 

cell to travel in the finite state space and finally selects a 
uniformly distributed sampling position over the cell. 
The sensor is launched randomly in D for both proposed 
and benchmark schemes.  

The sample means of the ASE (AMSE) for our 
adaptive sampling (blue circles) and the benchmark (red 
squares) along with the corresponding one standard 
deviation bars are shown in Fig. 7(b). The percentage 
improvement of the AMSE using the adaptive sampling 
scheme with respect to the random walk benchmark 
scheme is about 18 % with 123 samples, which 
demonstrates that the proposed algorithm consistently 
performs better as compared to the benchmark for an 
unknown field in a non-convex surveillance region. 
Notice that in this case, the improvement by using our 
approach compared to the random strategy is smaller due 
to the slower convergence rate caused by using only one 
mobile sensor.  
 
6.2. Real-life example 

Consider a case in which a single mobile sensing robot, 
e.g., a robotic helicopter [22], measures the depth value 
of a rectangular terrain. The true depth values of the 
terrain on grid points are obtained by a Kinect sensor 
[23] as shown in Fig. 9(a). The depth sensor inside the 
Kinect consists of an infrared laser projector combined 
with a monochrome CMOS sensor, which captures video 

(a)                    (b) 
Fig. 4. The estimated density functions of f1(x) for (a) 

the random walk scheme and (b) the adaptive 
sampling scheme. 

 

 
(a)                    (b) 

Fig. 5. The estimated density functions of f2(x) for (a) 
the random walk scheme and (b) the adaptive 
sampling scheme. 

(a)                    (b) 
Fig. 6. The estimated field 1

ˆ ( )xf  with 500 samples 
using (a) the random walk scheme and (b) the 
adaptive sampling scheme. 

 

(a)                   (b) 
Fig. 7. (a) The scalar field over a non-convex surveil-

lance region used in the simulation study. (b) 
Simulation results for the adaptive sampling 
scheme as compared to the random walk scheme 
on a non-convex field. 
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data in 3D under any ambient light conditions. The data 
are obtained via the USB connection through an open 
source driver.  

The surveillance region D is given by D = (1,50) 
×(1,30). The measurement noise level is set to be 10. The 
region D is partitioned into n =1500 cells, each of which 
has a preselected value ωi = 1. At time t = 0, N0 = 121 
evenly distributed initial samples are collected by the 
mobile sensor, which are used for estimating the Hessian 
matrix. Then the robot collects N = 50 samples during 
each time period based on the proposed algorithm and 
predicts the field at the next time instance. Similarly as in 
the previous examples, a random sampling scheme is 
used as a benchmark.  

The experiment is repeated 100 times and the 
averaged mean square error for both scheme are shown 
in Fig. 8. It is clear that the purposed scheme yields a 
faster decreasing rate of the ASE. The estimated fields 
using the random scheme and the adaptive sampling 
scheme are shown in Figs. 9(b) and (c), respectively.  
 

7. CONCLUSION 
 

We have proposed a stochastic adaptive sampling 
scheme in which mobile sensors use kernel regression to 
estimate an unknown scalar field in a possibly large, 
non-convex surveillance region. The fastest mixing 
reversible Markov chain (FMRMC) was used to 
guarantee the fastest convergence of the sampling 
probability distribution to the optimal sampling 
probability distribution for the mobile sensor network 
with mobility constraints. In contrast to the schemes 
proposed in [3,6,8], the proposed sampling approach 
using the nonparametric kernel regression does not need 
to know a priori statistical knowledge of the unknown 
scalar field of interest. Simulation results showed the 
excellent performance of the proposed scheme as 
compared to a random walk benchmark on different 
scenarios. The future work shall focus on developing 
scalable adaptive sampling schemes for a class of 
resource-constrained mobile sensor networks to deal 
with a large number of measurements. 
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