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a b s t r a c t

In this paper, a new class of Gaussian processes is proposed for resource-constrained mobile sensor
networks. Such a Gaussian process builds on a GMRFwith respect to a proximity graph over a surveillance
region. The main advantages of using this class of Gaussian processes over standard Gaussian processes
defined by mean and covariance functions are its numerical efficiency and scalability due to its built-in
GMRF and its capability of representing a wide range of non-stationary physical processes. The formulas
for predictive statistics such as predictivemean and variance are derived and a sequential field prediction
algorithm is provided for sequentially sampled observations. For a special case using compactly supported
weighting functions, we propose a distributed algorithm to implement field prediction by correctly fusing
all observations. Simulation and experimental results illustrate the effectiveness of our approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Gaussian processes (or Gaussian random fields) defined by
mean and covariance functions over a continuum space (Ras-
mussen & Williams, 2006) have been frequently used for mobile
sensor networks to statistically model physical phenomena such
as harmful algal blooms, temperature etc. (Graham& Cortés, 2012;
Krause, Singh, & Guestrin, 2008; Leonard et al., 2007; Xu & Choi,
2011; Xu, Choi, & Oh, 2011). Space and time indices can be consid-
ered as the input vector to the Gaussian process in order to model
the spatio-temporal environmental process (Leonard et al., 2007;
Xu et al., 2011).

However, Gaussian process regression, based on the standard
mean and covariance functions, requires an inversion of a
covariancematrixwhose size grows as the number of observations
increases. To overcome this increase in complexity, a number of
approximationmethods for Gaussian process regression have been
proposed in the machine learning community. This complexity
issue in the context of mobile sensor networks has been tackled
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in Oh, Xu, and Choi (2010) and Xu et al. (2011). In Xu et al. (2011),
it has been proposed that spatio-temporal Gaussian process
regression can be applied to truncated observations including only
measurements near the target position and time of interest for
robots with limited resources.

Recently, there have been efforts to find a way to fit a
computationally efficient Gaussian Markov random field (GMRF)
on a discrete lattice to a Gaussian random field on a continuum
space (Cressie & Verzelen, 2008; Hartman & Hössjer, 2008; Rue
& Tjelmeland, 2002). Such methods have been developed using a
fitting with a weighted L2-type distance (Rue & Tjelmeland, 2002),
using a conditional-mean least-squares fitting (Cressie & Verzelen,
2008), and for dealing with large data by fast Kriging (Hartman
& Hössjer, 2008). It has been demonstrated that GMRFs with
small neighborhoods can approximate Gaussian fields surprisingly
well (Rue & Tjelmeland, 2002). This approximated GMRF and
its regression are very attractive for the resource-constrained
mobile sensor networks due to its computational efficiency and
scalability (Le Ny & Pappas, 2010) as compared to the standard
Gaussian process and its regression, which is not scalable as the
number of observations increases.

Mobile sensing agents form an ad-hoc wireless communication
network in which each agent usually operates under a short com-
munication range,with limitedmemory and computational power.
For resource-constrained mobile sensor networks, developing dis-
tributed prediction algorithms for robotic sensors using only lo-
cal information from local neighboring agents has been one of the
most fundamental problems (Bertsekas & Tsitsiklis, 1999; Bullo,
Cortés, &Martínez, 2009; Choi, Oh, &Horowitz, 2009; Cortés, 2009;
Graham & Cortés, 2012; Olfati-Saber, Fax, & Murray, 2007).

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
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The contribution of the paper is as follows. First, a new class
of Gaussian processes is proposed for resource-constrainedmobile
sensor networks. Such a Gaussian process builds on a GMRF (Rue
& Held, 2005) with respect to a proximity graph, e.g., the Delaunay
graph of a set of vertices over a surveillance region. As a result,
this class of Gaussian processes can represent a wide class of
non-stationary Gaussian processes and provide computationally
efficient and scalable regression analysis. We show that predictive
statistics such as predictive mean and variance at any point can be
computed by using an inversion of a fixed size matrix, regardless
of the number of observations. Exploiting this result, we propose
a sequential prediction algorithm which is scalable to deal with
sequentially sampled observations (Section 2). We also develop
a distributed and scalable statistical inference algorithm for a
simple sampling scheme by applying the Jacobi over-relaxation
and discrete-time average consensus algorithms (Section 3).
Simulation and experimental study demonstrate the usefulness of
the proposed model and algorithms (Section 4).

Standardnotationwill be used throughout thepaper. LetR,R>0,
Z>0 denote, respectively, the sets of real numbers, positive real
numbers, and positive integers. Let (a)i and (A)ij denote the i-th
element in a vector a, and the i, j-th element in a matrix A. Given
a matrix A ∈ Rm×n, let rowi(A) ∈ Rn denote the i-th row of A.
The positive definiteness of a matrix A is denoted by A ≻ 0. Let
E, Var and Corr denote, respectively, the operators of expectation,
variance and correlation. An undirected graph G = (V, E) is a
tuple consisting of a set of vertices V := {1, . . . , n} and a set of
edges E ⊂ V × V . The neighbors of i ∈ V in G are denoted by
Ni := {j ∈ V | {i, j} ∈ E}. Other notation will be explained in due
course.

2. Spatial prediction

In this section, we first propose a new class of Gaussian random
fields with built-in Gaussian Markov random fields (GMRF) (Rue &
Held, 2005). Then we show how to compute the prediction at any
point of interest based onGaussian process regression, and provide
a sequential field prediction algorithm formobile sensor networks.

2.1. Spatial model based on GMRF

Let γ := (γ (p1), . . . , γ (pm))T be a zero-mean GMRF (Rue &
Held, 2005) with respect to an undirected graph G = (V, E),
where the location of vertex i is denoted by pi in the surveillance
regionD . Such locations of verticeswill be referred to as generating
points. The inverse covariancematrix (precisionmatrix) Q ≻ 0 has
the property (Q )ij ≠ 0 ⇔ {i, j} ∈ E . If the graph G has small
cardinalities of the neighbor sets, its precision matrix Q becomes
sparse with many zeros in its entries. This plays a key role in
computation efficiency of a GMRF which can be greatly exploited
by the resource-constrained mobile sensor network.

The spatial field is modeled by a Gaussian process with a built-
in GMRF defined as

z(s) = µ(s) +

m
j=1

λ(s, pj)γ (pj), (1)

where λ(·, ·) is a weighting function. The new class of Gaussian
processes is capable of representing awide range of non-stationary
Gaussian fields, by selecting (1) different number of generating
points m, (2) different locations of generating points {pj | j =

1, . . . ,m} over D , (3) a different structure of the precision matrix
Q , and (4) different weighting functions {λ(·, pj) | j = 1, . . . ,m}.

Remark 1. The number of generating points could be determined
by a model selection criterion such as the Akaike information
criterion (Akaike, 1974). Similar to hyperparameter estimation in

the standard Gaussian process regression, one can estimate all
other parameters using maximum likelihood (ML) optimization
(Rasmussen &Williams, 2006; Xu & Choi, 2011). This optimization
is non-convex and so the initial conditions need to be chosen
carefully to avoid local minima. In our approach, we use basic
structures for weighting functions and the precision matrix,
however, wemake them as functions of the locations of generating
points. Different spatial resolutions can be obtained by a suitable
choice of locations of generating points. As an example shown
in Fig. 1, higher resolution can be obtained by higher density of
generating points (see lower left corner). In this way, we only need
to determine the locations of generating points. This approach will
be demonstrated with real-world data in Section 4.2.

2.2. Gaussian process regression

Supposewehave a collection of observations y := (y1, . . . , yn)T
whose entries are sampled at the corresponding points s1, . . . , sn.
The noise corrupted measurement yi ∈ R is given by yi =

z(si) + ϵi, where ϵi
i.i.d.
∼ N (0, σ 2

ϵ ) is an independent and identically
distributed (i.i.d.) Gaussian white noise. We then have the
following results.

Proposition 2. Let Λ ∈ Rn×m be a matrix obtained by (Λ)ij =

λ(si, pj) and let λ ∈ Rm be a vector obtained by (λ)i = λ(s0, pi),
where s0 is a point of interest. Then the covariance matrix of y and
the covariance between y and z(s0) are given by

C := E[(y − E y)(y − E y)T ] = ΛQ−1ΛT
+ σ 2

ϵ I,

k := E[(y − E y)z(s0)] = ΛQ−1λ,

where Q ∈ Rm×m is the precision matrix of the GMRF γ ∈ Rm.

Proof. The proof follows by simple algebra. �

By Proposition 2, we can make a prediction at the point of interest
s0 using Gaussian process regression (Rasmussen & Williams,
2006). This is summarized by the following theorem.

Theorem 3. For given y, the prediction of z(s0) at any location
s0 ∈ D is given by the conditional distribution z(s0)|y ∼

N (ẑ(s0), σ 2(s0)), where the predictive mean and variance are ob-
tained by

ẑ(s0) = µ(s0) + λT Q̂−1ŷ,

σ 2(s0) = λT Q̂−1λ,
(2)

with Q̂ = Q + σ−2
ϵ ΛTΛ ∈ Rm×m and ŷ = σ−2

ϵ ΛT (y − µ) ∈ Rm.

Proof. The result follows by simple algebra based on Proposi-
tion 2. �

Remark 4. When the generating points {p1, p2, . . . , pm} are not
known a priori, they can be estimated by maximizing the
likelihood function. Given n observations y = (y1, y2, . . . , yn)T
sampled at {s1, s2, . . . , sn}, the maximum likelihood estimate of
the generating points can be obtained via solving the following
optimization problem

p̂ML = argmax
p

logπ(y), (3)

where π(y) is the likelihood function.

Remark 5. Note that the number of generating points m is fixed
and the number of observations n may grow in time, and so in
general we consider m ≪ n. Theorem 3 shows that only the
inversion of anm×mmatrix Q̂ = Q+σ−2

ϵ ΛTΛ is required in order
to compute the predictive distribution of the field at any point.
The computational complexity grows linearly with the number of
observations, i.e., O(nm2), as compared to the standard Gaussian
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a b

Fig. 1. (a) The generating points in blue dots and the associated Delaunay graph with edges in red dotted lines. The Voronoi partition is also shown in blue solid lines. (b) A
Gaussian random field with a built-in GMRF with respect to the Delaunay graph in (a).

process regression which requires O(n3). To eliminate the linear
growth of complexity O(nm2), as n increases, in what follows,
we present a sequential field prediction algorithm for sequential
observations by exploiting the results of Theorem 3. In particular,
we show that the computational complexity will be fixed at
O(Nm2), where N is the number of newly added observations in
each iteration.

2.3. Sequential prediction algorithm

Consider a sensor network consisting of N mobile sensing
agents distributed in the surveillance region D . The index of the
robotic sensors is denoted by I := {1, . . . ,N}. The sensing agents
sample the environmental field at time t ∈ Z>0 and send the
observations to a central station which is in charge of the data
fusion.

At time t , agent i makes an observation yi(t) at location si(t).
Denote the collection of observations at time t by yt := (y1(t),
. . . , yN(t))T . We have the following proposition.

Proposition 6. At time t ∈ Z>0, the predictive mean and variance at
any point of interest can be obtained via (2) with

Q̂t = Q̂t−1 + σ−2
ϵ ΛT

t Λt , Q̂0 = Q

ŷt = ŷt−1 + σ−2
ϵ ΛT

t (yt − µt), ŷ0 = 0,

where (Λt)ij = λ(si(t), sj(t)), and (µt)i = µ(si(t)).

Proof. The result can be obtained easily by noting that ATA =

AT
1A1 + AT

2A2, where A = (AT
1, A

T
2)

T . �

Based on Proposition 6, the prediction of z(s0) can be computed
sequentially as time t increases.

3. Distributed spatial prediction

In this section, we propose a distributed approach, in which
robotic sensors exchange only local information between neigh-
bors, to implement the field prediction effectively fusing all obser-
vations collected by all sensors correctly. This distributed approach
can be implemented for a class of weighting functions λ(·, ·) in (1)
that have compact supports. In particular, we consider the weight-
ing function defined by

λ(s, pj) = λ(∥s − pj∥/r), (4)

where λ(h) = (1 − h) cos(πh) +
1
π
sin(πh) if h ≤ 1, and 0

otherwise. Notice that the weighting function λ(·, ·) in (4) has a
compact support, i.e., λ(s, pj) is non-zero if and only if the distance
∥s − pj∥ is less than the support r ∈ R>0.

3.1. Distributed computation

We first briefly introduce distributed algorithms for solving
linear systems and computing the averages. They will be used as
major tools for distributed implementation of field prediction.

• Jacobi over-relaxation method: The Jacobi over-relaxation
(JOR) (Bertsekas & Tsitsiklis, 1999)method provides an iterative
solution of a linear system Ax = b, where A ∈ RN×N is
a nonsingular matrix and x, b ∈ RN . If agent i knows the
rowi(A) ∈ RN and bi, and aij = (A)ij = 0 if agent i and agent j
are not neighbors, then the recursion is given by

x(k+1)
i = (1 − h)x(k)

i +
h
aii


bi −


j∈Ni

aijx
(k)
j


. (5)

This JOR algorithm converges to the solution of Ax = b from
any initial condition if h < 2/N (Cortés, 2009). At the end of the
algorithm, agent i knows the i-th element of x = A−1b.

• Discrete-time average consensus: The Discrete-time average
consensus (DAC) provides a way to compute the arithmetic
mean of elements in the a vector c ∈ RN . Assume the graph
is connected. If agent i knows the i-th element of c , the network
can compute the arithmetic mean via the following recursion
(Olfati-Saber et al., 2007)

x(k+1)
i = x(k)

i + ϵ

j∈Ni

aij(x
(k)
j − x(k)

i ), (6)

with initial condition x(0) = c , where aij = 1 if j ∈ Ni
and 0 otherwise, 0 < ϵ < 1/∆, and ∆ = maxi(


j≠i aij)

is the maximum degree of the network. After the algorithm
converges, all nodes in the network know the average of c ,
i.e.,

n
i=1 ci/N .

3.2. Distributed prediction algorithm

Consider a GMRF with respect to a proximity graph G = (V, E)
that generates a Gaussian random field in (1). The index of the
generating points is denoted by V := {1, . . . ,m}. The location of
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the i-th generating point is pi. The edges of the graph are considered
to be E := {{i, j} | ∥pi−pj∥ ≤ R}, where R is a constant that ensures
the graph is connected.

Consider a mobile sensor network consisting of N mobile
sensing agents distributed in the surveillance region D . For
simplicity, we assume that the number of agents is equal to the
number of generating points, i.e., N = m. The index of the robotic
sensors is denoted by I = V . The location of agent i is denoted by
si.

The assumptions made for the resource-constrained mobile
sensor networks are listed as follows.

A.1 Agent i is in charge of sampling at point si within a r-disk
centered at pi, i.e., ∥si − pi∥ < r.

A.2 r is the radius of the support of the weighting function in (4)
and also satisfies that 0 < r < R

2 .
A.3 Agent i can only locally communicate with neighbors in Ni :=

{j ∈ I | {i, j} ∈ E} defined by the connected proximity graph
G = (I, E).

A.4 Agent i knows rowi(Q ), i.e., the i-th row of Q , where (Q )ij ≠ 0
if and only if j ∈ {i} ∪ Ni.

Remark 7. As in A.1, it is reasonable to have at least one
agent collect measurements that are correlated with a random
variable from a single generating point. This sampling rule may
be modified such that a single agent dynamically samples for
multiple generating points or more number of agents samples for
a generating point depending on available resources. Since there is
at least one agent in charge of a generating point by A.1, it is natural
to have A.3 and A.4 taking advantage of the proximity graph for the
GMRF. Notice that each agent only knows local information of Q as
described in A.4.

From A.1 and A.2, since R > 2r , we have λ(sℓ, pi) = 0 if ℓ ∉ Ni.
Thus the matrix Q̂ = Q + σ−2

ϵ ΛTΛ ∈ Rm×m and the vector
ŷ = σ−2

ϵ ΛT (y − µ) ∈ Rm can be obtained in the following form.

(Q̂ )ij = (Q )ij + σ−2
ϵ


ℓ∈{{i}∪Ni}∩{{j}∪Nj}

λ(sℓ, pi)λ(sℓ, pj),

(ŷ)i = σ−2
ϵ


ℓ∈{i}∪Ni

λ(sℓ, pi)(yℓ − µℓ).
(7)

Notice that Q̂ has the same sparsity as Q . From (7), A.3 and
A.4, agent i can compute rowi(Q̂ ) and (ŷ)i by using only local
information from neighbors. Using rowi(Q̂ ) and (λ)i, agent i
can obtain the i-th element in the vector Q̂−1λ = (Q +

σ−2
ϵ ΛTΛ)−1λ via JOR by using only local information. Finally, using

(ŷ)i and (λ)i the prediction mean and variance can be obtained
via the discrete-time average consensus algorithm. Notice that the
sequential update of Q̂ and ŷ for sequential observations proposed
in Section 2.3 can be also applied to the distributed algorithm.
The distributed algorithm for sequential field prediction under
assumptions A.1–4 is summarized in Table 1.

The number of robotic sensors and the sampling rule can be
modified or optimized tomaintain a better quality of the prediction
and the corresponding distributed algorithm may be derived in a
same way accordingly.

4. Simulation and experiment

In this section, we apply the proposed schemes to both simula-
tion and experimental study.

4.1. Simulation

We first apply our proposed prediction algorithms to a numer-
ically generated Gaussian random field z(·) based on a GMRF with

Table 1
Distributed algorithm for sequential field prediction.

respect to a graph G = (V, E) defined in (1). The mean function
µ(·) is assumed to be constant and µ = 5 is used in the sim-
ulation. We assume the generating points of the GMRF, indexed
by V = {1, . . . ,m} where m = 30, are located at {p1, . . . , pm}

in a 2-D unit area D . The edges of the graph are assumed to be
E := {{i, j} | ∥pi − pj∥ ≤ R}, where R = 0.4.

The GMRF γ = (γ (p1), . . . , γ (pm))T has a zero-mean and the
precision matrix Q is given by

(Q )ij =


|Ni| + c0, if j = i,
−1, if j ∈ Ni,
0, otherwise,

where |Ni| denotes the degree of node i, i.e., the number of
connections it has to other nodes, c0 = 0.1 is used to ensure Q
is positive definite since a Hermitian diagonally dominant matrix
with real non-negative diagonal entries is positive semi-definite
(Rue & Held, 2005). We use compactly supported weighting
functions defined in (4) for both centralized and distributed
schemes with different support r . The sensor noise level is given
by σϵ = 0.5. Since the optimal sampling is beyond the scope of
this paper, in the simulation, we use a random sampling strategy
in which robotic sensors sample at random locations at each time
instance.

We consider a scenario in which prediction is implemented
in a distributed fashion (Table 1) under assumptions A.1–4 for
the resource-constrained mobile sensor network in Section 3.2. In
particular, N = 30 robotic sensors are distributed according to the
graph G = (V, E), which is connected. Agent i is in charge of the
samplingwith in a r-disk centered at pi, where the support r = 0.2
is used. Agent i has a fixed neighborhood, i.e., Ni = {j | {i, j} ∈ E}.
In the simulation, h = 0.02 in (5) and ϵ = 0.02 in (6) are
chosen to ensure the convergence of the JOR algorithmand theDAC
algorithm.
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Fig. 2. Simulation results for the distributed scheme. (a) The true field, (b) the predicted field at time t = 5. The generating points are shown in circles, and the sampling
locations are shown in crosses.

a b

Fig. 3. (a) The true field on grid positions obtained by the Kinect sensor and randomly sampled positions indicated in black crosses. (b) The fitted Gaussian random field
with a build-in GMRF with respect to the Delaunay graph.

The true and the predicted fields at time t = 5 are shown in
Fig. 2-(a) and (b), respectively. The normalized RMS errors (RMS
divided by the range of observed values) computed over about
10,000 grid points at t = 1, 2, . . . , 5 are 10%, 8%, 5.5%, 4.5%, and
4%, respectively. The computational time at each time instance
remains fixed due to the nice structure of the proposed Gaussian
field in (1) and its consequent results from Theorem 3.

4.2. Experiment

In order to show the practical usefulness of the proposed
approach, we apply the centralized scheme in Theorem 3 on
experimentally obtained observations. We first measured depth
values of a terrain on grid points by using a Microsoft Kinect
sensor (Microsoft corporation, 0000) as shown in Fig. 3-(a). As
pointed out in Remark 1, we make the structures of weighting
functions and the precision matrix as functions of the locations
of generating points. In particular, two generating points are
neighbors if and only if their corresponding Voronoi cells intersect.
The individual weighting function takes the same form as in (4)
and its support size ri is selected to be the largest distance between
the generating point i and its neighbors. We then predict the field
by our model with 20 estimated generating points given by the
ML estimator in (3) using a subset of experimental observations,
i.e., 200 randomly sampled observations denoted by crosses in

Fig. 3-(a). The estimated positions of generating points along with
the predicted field are shown in Fig. 3-(b). In this experiment, it is
clear to see that our approach effectively produces the predicted
field, which is very close to the true field for the case of unknown
generating points.

5. Conclusion

In this paper, we introduced a new class of Gaussian processes
with built-in GMRFs for modeling a wide range of environmental
fields. The Gaussian process regression for the predictive statistics
at any point of interest was provided and a sequential field
prediction algorithm with fixed complexity was proposed to
deal with sequentially sampled observations. For a special case
with compactly supported weighting functions, we proposed a
distributed field prediction algorithm in which the prediction can
be computed via Jacobi over-relaxation algorithm and discrete-
time average consensus. Optimal learning and sampling of
the Gaussian process with built-in GMRF using mobile sensor
networks will be investigated in the future.
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