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a b s t r a c t

In this paper, we consider the problem of predicting a large scale spatial field using successive noisy
measurements obtained by mobile sensing agents. The physical spatial field of interest is discretized and
modeled by a Gaussian Markov random field (GMRF) with uncertain hyperparameters. From a Bayesian
perspective, we design a sequential prediction algorithm to exactly compute the predictive inference of
the random field. The main advantages of the proposed algorithm are: (1) the computational efficiency
due to the sparse structure of the precisionmatrix, and (2) the scalability as the number of measurements
increases. Thus, the prediction algorithm correctly takes into account the uncertainty in hyperparameters
in a Bayesian way and is also scalable to be usable for mobile sensor networks with limited resources.
We also present a distributed version of the prediction algorithm for a special case. An adaptive
sampling strategy is presented for mobile sensing agents to find the most informative locations in taking
future measurements in order to minimize the prediction error and the uncertainty in hyperparameters
simultaneously. The effectiveness of the proposed algorithms is illustrated by numerical experiments.

© 2013 Published by Elsevier Ltd
1. Introduction

In recent years, there has been an increasing exploitation of
navigation ofmobile sensor networks and robotic sensors interact-
ing with uncertain environments (Choi, Oh, & Horowitz, 2009; Le
Ny & Pappas, 2013; Leonard et al., 2007; Lynch, Schwartz, Yang, &
Freeman, 2008; Stanković & Stipanović, 2010; Xu, Choi, &Oh, 2011;
Zhang, Siranosian, & Krstić, 2007). A necessity in such scenarios is
to design algorithms to process collected observations from envi-
ronments (e.g., distributed estimators) for robots such that either
the local information about the environment can be used for local
control actions or the global information can be estimated asymp-
totically. The approach to designing such algorithms takes two
different paths depending on whether it uses an environmental
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model in space and time or not. Without environmental models,
extremum seeking control has been proven to be very effective
for finding the source of a signal (chemical, electromagnetic, etc.)
(Stanković & Stipanović, 2010; Zhang et al., 2007). The drawback
of extremum seeking control is that it limits its task to finding
the maximum (or minimum) point of the environmental field. A
unifying framework of distributed stochastic gradient algorithms
that can deal with coverage control, spatial partitioning, and dy-
namic vehicle routing problems in the absence of a priori knowl-
edge of the event location distribution, has been presented in Le
Ny and Pappas (2013). However, to tackle a variety of useful tasks
such as exploration, estimation, prediction and maximum seek-
ing of a scalar field, etc., it is essential for robots to have a spatial
(and temporal) field model (Choi et al., 2009; Cortés, 2009; Gra-
ham&Cortés, 2009, 2012; Krause, Singh, &Guestrin, 2008; Leonard
et al., 2007; Lynch et al., 2008; Varagnolo, Pillonetto, & Schen-
ato, 2012; Xu & Choi, 2012a,b; Xu, Choi, Dass, & Maiti, 2012b; Xu
et al., 2011). Although control algorithms for mobile robots have
been developed based on computationally demanding, physics-
based field models (e.g., atmospheric dispersion modeling), re-
cently phenomenological and statistical modeling techniques
such as kriging, Gaussian processes regression, and kernel regres-
sion have gained much attention for resource-constrained mobile
robots. Among phenomenological spatial models, adaptive control
of multiple robotic sensors based on a parametric approach needs
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a persistent excitation (PE) condition for convergence of parame-
ters (Choi et al., 2009), while control strategies based on Bayesian
spatial models do not require such conditions, (e.g., by utilizing
priori distributions as in Kalman filtering (Lynch et al., 2008) or
Gaussian process regression (Xu et al., 2011)). Hence, control en-
gineers become more aware of the usefulness of nonparametric
Bayesian approaches such as Gaussian processes (defined bymean
and covariance functions) (Cressie, 1986; Rasmussen & Williams,
2006) to statisticallymodel physical phenomena for the navigation
of mobile sensor networks e.g., Cortés (2009); Graham and Cortés
(2009, 2012); Krause et al. (2008); Leonard et al. (2007); Xu and
Choi (2012a); Xu et al. (2012b, 2011). Other more data-driven ap-
proaches have also developed (without a statistical structure used
in Gaussian processes) such as using kernel regression (Xu & Choi,
2012b) and in reproducing kernel Hilbert spaces (Varagnolo et al.,
2012). However, such an approachwithout a statistical structure in
a random field (as in Xu and Choi (2012b), Varagnolo et al. (2012))
requires usually more observations than the one with a statistical
structure for a decent prediction quality.

The significant computational complexity in Gaussian pro-
cess regression due to the growing number of observations (and
hence the size of covariance matrix) has been tackled in different
ways (Herbrich, Lawrence, & Seeger, 2002; Seeger, 2003; Smola &
Bartlett, 2001; Tresp, 2000; Williams & Seeger, 2001). In Xu et al.
(2011), the authors analyzed the conditions under which near-
optimal prediction can be achieved using only truncated observa-
tions when the covariance function is known a priori. On the other
hand, unknown hyperparameters in the covariance function can
be estimated by a maximum likelihood (ML) estimator or a max-
imum a posteriori (MAP) estimator and then be used in the pre-
diction as true hyperparameters as in an empirical Bayes approach
(Xu & Choi, 2011). However, the point estimate (ML or MAP esti-
mate) itself needs to be identified using a sufficient amount ofmea-
surements and it fails to fully incorporate the uncertainty in the
estimated hyperparameters into the prediction in a fully Bayesian
perspective.

The advantage of a fully Bayesian approach is that the uncer-
tainty in the model parameters are incorporated in the predic-
tion (Bishop, 2006). However, the solution often requires Markov
Chain Monte Carlo (MCMC) methods, which greatly increases the
computational complexity. In Graham and Cortés (2009), an iter-
ative prediction algorithm without resorting to MCMC methods
has been developed based on analytical closed-form solutions from
results in Gaudard, Karson, Linder, and Sinha (1999), by assum-
ing that the bandwidths in the covariance function of the spatio-
temporal Gaussian random field are known a priori. In Xu, Choi,
Dass, andMaiti (2011), the authors designed a sequential Bayesian
prediction algorithm to deal with unknown bandwidths by using a
compactly supported kernel and selecting a subset of collected
measurements. In contrast to Xu et al. (2011), in this paper, we
seek a fully Bayesian approach over a discretized surveillance re-
gion such that the Bayesian spatial prediction utilizes all collected
measurements in a scalable fashion.

Recently, there have been efforts to fit a computationally effi-
cient Gaussian Markov random field (GMRF) on a discrete lattice
to a Gaussian random field on a continuum space (Cressie & Verze-
len, 2008; Hartman & Hössjer, 2008; Rue & Tjelmeland, 2002). It
has been demonstrated that GMRFs with small neighborhoods can
approximate Gaussian fields surprisingly well (Rue & Tjelmeland,
2002). This approximated GMRF and its regression are very attrac-
tive for resource-constrained mobile sensor networks due to its
computational efficiency and scalability (Le Ny & Pappas, 2010)
as compared to the standard Gaussian process and its regression.
Fast kriging of large data sets by using a GMRF as an approxima-
tion of a Gaussian field has been proposed in Hartman and Hössjer
(2008). In Xu and Choi (2012a), the authors provided a new class of
Gaussian processes that builds on a GMRF and derived formulas for
predictive statistics. However, they both assume the precisionma-
trix which is the inverse of the covariance matrix is given or esti-
mated a priori.

The contributions of the paper are as follows. First, we model
the physical spatial field as a GMRF with uncertain hyperparame-
ters and formulate the estimation problem from a Bayesian point
of view. Second, we design an sequential Bayesian estimation al-
gorithm to effectively and efficiently compute the exact predictive
inference of the spatial field. The proposed algorithm often takes
only seconds to run even for a very large spatial field, as will be
demonstrated in this paper. Moreover, the algorithm is scalable in
the sense that the running time does not grow as the number of
observations increases. In particular, the scalable prediction algo-
rithm does not rely on the subset of samples to obtain scalability
(as was done in Xu et al. (2011)), correctly fusing all collectedmea-
surements. Thus, in contrast to previous works (Xu & Choi, 2012a;
Xu et al., 2011), our prediction algorithm correctly takes into ac-
count the uncertainty in hyperparameters in a Bayesian way and is
also scalable to be usable for mobile sensor networks with limited
resources. We then propose a distributed prediction algorithm for
a special case such that sensing agents make a prediction by ex-
changing only local information with their neighbors. An adaptive
sampling strategy for mobile sensor networks is proposed at the
end to possibly improve the quality of prediction and to reduce the
uncertainty in hyperparameter estimation simultaneously. A pre-
liminary version of this paper has been reported in Xu, Choi, Dass,
and Maiti (2012a).

The paper is organized as follows. In Section 2, we introduce a
spatial field model based on a GMRF, and amobile sensor network.
In Section 3, we introduce a Bayesian inference approach to esti-
mate the spatial field of interest. A sequential Bayesian prediction
algorithm is proposed in Section 4 to dealwith computational com-
plexity. A distributed prediction is then proposed in Section 5. An
adaptive sampling algorithm is proposed in Section 6 for mobile
sensing agents in order to minimize the prediction error and the
uncertainty in hyperparameters simultaneously. We demonstrate
the effectiveness through a simulation study in Section 7.

Standardnotationwill be used throughout thepaper. LetR,R>0,
Z>0 denote, respectively, the sets of real, positive real, and posi-
tive integer numbers. The positive definiteness of a matrix A is de-
noted by A ≻ 0. Let E, and Corr denote, respectively, the operators
of expectation, and correlation. A random vector x, which has a
multivariate normal distribution of mean vector µ and covariance
matrix Σ , is denoted by x ∼ N (µ, Σ). For a set A, the absolute
complement of a subset B ⊂ A is denoted by −B. Let ◦ denote
the element-wise product. Let O(1) denote the running time of an
algorithm, which is a constant. Other notation will be explained in
due course.

2. Preliminaries

The objective of this paper is to design a sequential Bayesian
prediction algorithm and an adaptive sampling algorithm for
mobile sensing agents to consistently and accurately predict a
spatial field of interest. In what follows, we specify the models for
the spatial field and the mobile sensor network.

2.1. Spatial field model

Let F∗ ⊂ Rd denote the spatial field of interest. We discretize
the field into n∗ square areas, whose centers are denoted by S∗ :=

{s1, . . . , sn∗
}. Let z∗ = (z1, . . . , zn∗

)T ∈ Rn∗ be the collection of
values of the field (e.g., the temperature) on the spatial sites in S∗.
Due to the irregular shape a spatial field may have, we extend the
field to F such that n ≥ n∗ sites denoted by S := {s1, . . . , sn}
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Fig. 1. Example of a spatial field. Much finer grids will be used for real applications.

Fig. 2. Elements of the precision matrix Q related to a single location.

are on a regular grid as can be seen in Fig. 1. Notice that we have
S∗ ⊆ S. The latent variable zi = z(si) ∈ R is modeled by

zi = µ(si) + ηi, ∀1 ≤ i ≤ n, (1)

where si ∈ S ⊂ Rd is the i-th site location. The mean function
µ : Rd

→ R is defined as

µ(si) = f (si)Tβ,

where f (si) = (f1(si), . . . , fp(si))T ∈ Rp is a known regression
function, and β = (β1, . . . , βp)

T
∈ Rp is an unknown vector of re-

gression coefficients. We define η = (η1, . . . , ηn)
T

∈ Rn as a zero-
mean Gaussian Markov random field (GMRF) (Rue & Held, 2005)
denoted by

η ∼ N

0,Q−1

η|θ


,

where the inverse covariance matrix (or precision matrix) Qη|θ ∈

Rn×n is a function of a hyperparameter vector θ ∈ Rm.
There exist many different choices of the GMRF (i.e., the preci-

sion matrix Qη|θ ) (Rue & Held, 2005). For instance, Fig. 2 displays
one choice of the elements of the precision matrix related to a sin-
gle location. The associated full conditionals are shown in (2) given
in Box I (with obvious notation as shown in Rue and Held (2005)).
The hyperparameter vector is defined as θ = (κ, α)T ∈ R2

>0,
whereα = a−4. The resultingGMRF accurately represents aGaus-
sian random field with the Matérn covariance function (Lindgren,
Rue, & Lindström, 2011)

C(r) = σ 2
f
21−ν

Γ (ν)

√
2νr
ℓ

ν

Kν

√
2νr
ℓ


,

where Kν(·) is a modified Bessel function (Rasmussen & Williams,
2006), with order ν = 1, a bandwidth ℓ = 1/

√
α, and vertical scale

σ 2
f = 1/(4πακ). The hyperparameter α > 0 guarantees the pos-

itive definiteness of the precision matrix Qη|θ . In the case where
α = 0, the resulting GMRF is a second-order polynomial intrin-
sic GMRF (Rue & Held, 2005; Rue, Martino, & Chopin, 2009). No-
tice that the precision matrix is sparse which contains only a small
number of non-zero elements. This property will be exploited for
fast computation in the following sections.
a

b

c

Fig. 3. Numerically generated spatial fields defined in (1) with µ(si) = β = 20,
and Qη|θ constructed using (2) (see Box I) with hyperparameters being (a) θ =

(4, 0.0025)T , (b) θ = (1, 0.01)T , and (c) θ = (0.25, 0.04)T .

Example 1. Consider a spatial field of interest F∗ ∈ (0, 100) ×

(0, 50). We first divide the spatial field into a 100×50 regular grid
with equal areas 1, which makes n∗ = 5000. We then extend the
field such that 120×70 grids (i.e., n = 8400) are constructed on the
extended fieldF = (−10, 110)× (−10, 60). The precisionmatrix
Qη|θ introduced above is chosen with the regular lattices wrapped
on a torus (Rue & Held, 2005). (The grid is made to be wrapped
on a torus such that the initial prediction error variances are the
same among all grid points.) In this case, only 0.15% elements in the
sparse matrix Qη|θ are non-zero. The numerically generated fields
with the mean function µ(si) = β = 20, and the hyperparameter
vector θ = (κ, α)T being different values are shown in Fig. 3.

2.2. Mobile sensor network

Consider N spatially distributed mobile sensing agents indexed
by i ∈ I = {1, . . . ,N} sampling from n∗ spatial sites in S∗. Agents
are equippedwith identical sensors and sample at time t ∈ Z>0. At
time t , agent i takes a noise corrupted measurement at its current
location qt,i ∈ S∗, i.e.,

yt,i = z(qt,i) + ϵt,i, ϵt,i
i.i.d.
∼ N (0, σ 2

w),

where measurement errors are assumed to be independent and
identically distributed (i.i.d.). The noise level σ 2

w > 0 is assumed to
be known. For notational simplicity, we denote all agents’ locations
at time t by qt = (qTt,1, . . . , q

T
t,N)T and the observationsmade by all

agents at time t by yt = (yt,1, . . . , yt,N)T . Furthermore, we denote
the collection of agents’ locations and the collective observations
from time 1 to t by q1:t = (qT1, . . . , q

T
t )

T , and y1:t = (yT1, . . . , y
T
t )

T ,
respectively.

3. Bayesian predictive inference

In this section, we propose a Bayesian inference approach to
make predictive inferences of a spatial field z∗ ∈ Rn∗ .
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2)
E(ηi|η−i, θ) =
1

4 + a2

2a

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ • ◦ • ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

− 2

◦ ◦ ◦ ◦ ◦

◦ • ◦ • ◦

◦ ◦ ◦ ◦ ◦

◦ • ◦ • ◦

◦ ◦ ◦ ◦ ◦

− 1

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

• ◦ ◦ ◦ •

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

 , (

Var(ηi|η−i, θ) = (4 + a2)κ

Box I.
First,we assign the vector of regression coefficientsβ ∈ Rp with
a Gaussian prior, namely β ∼ N


0, T−1


, where the precisionma-

trix T ∈ Rp×p is often chosen as a diagonal matrix with small diag-
onal elements when no prior information is available. Hence, the
distribution of latent variables z given β and the hyperparameter
vector θ is Gaussian, i.e.,

z|β, θ ∼ N

Fβ,Q−1

η|θ


,

where F = (f (s1), . . . , f (sn))T ∈ Rn×p. For notational simplicity,
we denote the full latent field of dimension n+p by x = (zT , βT )T .
Then, for a given hyperparameter vector θ , the distribution π(x|θ)
is Gaussian, obtained by

π(x|θ) = π(z|β, θ)π(β)

∝ exp


−
1
2
(z − Fβ)TQη|θ (z − Fβ) −

1
2
βTTβ


= exp


−

1
2
xTQx|θx


,

where the precision matrix Qx|θ ∈ R(n+p)×(n+p) is defined by

Qx|θ =


Qη|θ −Qη|θF

−F TQη|θ F TQη|θF + T


.

By the matrix inversion lemma, the covariance matrix Σx|θ ∈

R(n+p)×(n+p) can be obtained by

Σx|θ = Q−1
x|θ =


Q−1

η|θ + FT−1F T FT−1

(FT−1)T T−1


.

At time t ∈ Z>0, we have a collection of observational data
y1:t ∈ RNt obtained by the mobile sensing agents over time. Let
A1:t = (A1, . . . , At) ∈ R(n+p)×Nt , whereAτ ∈ R(n+p)×N is defined by

(Aτ )ij =


1, if i ≤ n and si = qτ ,j,
0, otherwise.

Then the covariance matrix of y1:t can be obtained by

R1:t = AT
1:tΣx|θA1:t + P1:t ,

where P1:t = σ 2
wI ∈ RNt×Nt . By Gaussian process regression (Ras-

mussen & Williams, 2006), the full conditional distribution of x is
also Gaussian, i.e.,

x|θ, y1:t ∼ N (µx|θ,y1:t , Σx|θ,y1:t ), (3)

where

Σx|θ,y1:t = Σx|θ − Σx|θA1:tR−1
1:t A

T
1:tΣx|θ ,

µx|θ,y1:t = Σx|θA1:tR−1
1:t y1:t .

(4)

The posterior distribution of the hyperparameter vector θ can
be obtained via

π(θ |y1:t) ∝ π(y1:t |θ)π(θ),

where the log likelihood function is defined by

logπ(y1:t |θ) = −
1
2
yT1:tR

−1
1:t y1:t −

1
2
log det R1:t −

Nt
2

log 2π. (5)
If a discrete prior on the hyperparameter vector θ is chosen with
a support Θ = {θ1, . . . , θL}, the posterior predictive distribution
π(x|y1:t) can be obtained by

π(x|y1:t) =


ℓ

π(x|θℓ, y1:t)π(θℓ|y1:t). (6)

The predictive mean and variance then follow as

µxi|y1:t =


ℓ

µxi|θℓ,y1:t π(θℓ|y1:t),

σ 2
xi|y1:t =


ℓ

σ 2
xi|θℓ,y1:t π(θℓ|y1:t)

+


ℓ

(µxi|θℓ,y1:t − µxi|y1:t )
2π(θℓ|y1:t),

(7)

where µxi|θℓ,y1:t is the i-th element in µx|θℓ,y1:t , and σ 2
xi|θℓ,y1:t

is the
i-th diagonal element in Σx|θℓ,y1:t .

Remark 2. The discrete prior π(θ) greatly reduces the computa-
tional complexity in that it enables summation in (6) instead of
numerical integration which has to be performed for a continu-
ous prior distribution. However, the computation of the full con-
ditional distribution π(x|θ, y1:t) in (4) and the likelihood π(y1:t |θ)
(5) still requires the inversion of the covariance matrix R1:t , whose
size grows as time t increases. Thus, the running time grows as
newobservations are collected and itwill soon become intractable.
This problem will be addressed in the following sections thanks to
the sparsity structure of the precisionmatrix brought by the GMRF
model.

4. Sequential Bayesian inference

In this section, we exploit the sparsity of the precision matrix,
and derive a sequential Bayesian prediction algorithm which can
be performed in constant time as the number of observations
increases.

4.1. Sequential update on full conditional distribution

First, we derive the update rule for the full conditional dis-
tribution in (3). From here on, we will use Qt|θ := Qx|θ,y1:t and
µt|θ := µx|θ,y1:t , for notational simplicity. Moreover, we define
ut,i ∈ Rn+p as

(ut,i)j =


1, if j ≤ n and sj = qt,i,
0, otherwise.

We have the following propositions.

Proposition 3. The full conditional distribution in (3) can be
obtained by

x|θ, y1:t ∼ N (Q−1
t|θ bt ,Q−1

t|θ ), (8)

where

Qt|θ = Qt−1|θ +
1
σ 2

w

N
i=1

ut,iuT
t,i,

bt = bt−1 +
1
σ 2

w

N
i=1

ut,iyt,i,

(9)
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with initial conditions

Q0|θ := Qx|θ,y1:0 = Qx|θ , and b0 = 0.

Proof. The result followed by the Woodbury identity and simple
algebra.

Proposition 4. The full conditional mean and variance can be
updated by

µt|θ = Q−1
t|θ bt ,

diag(Q−1
t|θ ) = diag(Q−1

t−1|θ ) −

N
i=1

ht,i|θ ◦ ht,i|θ

σ 2
w + uT

t,iht,i|θ
,

(10)

where

ht,i|θ = B−1
t,i|θut,i,

Bt,i|θ = Qt−1|θ +
1
σ 2

w

i
j=1

ut,juT
t,j.

Proof. The result followed by the Sherman–Morrison formula and
simple algebra.

We then have the following lemma.

Lemma 5. For a given θ ∈ Θ , the full conditional mean and variance,
i.e., µt|θ and diag(Q−1

t|θ ) in (10), can be updated in O(1) given Qt−1|θ
and bt−1.
Proof. The update ofQt|θ and bt can be obviously computed in con-
stant time. Then µt|θ in (10) can be obtained by solving a linear
equation Qt|θµt|θ = bt . Due to the sparse structure of Qt|θ , this op-
eration can be done in a very short time. Moreover, notice that Qt|θ
and Qt−1|θ have the same sparsity structure and hence the compu-
tational complexity remains fixed. Similarly, ht,i|θ can be obtained
in O(1) and hence diag(Q−1

t|θ ) in (10) can be obtained in O(1).

4.2. Sequential update on likelihood

Next, we derive the update rule for the log likelihood function.
We have the following proposition.

Proposition 6. The log likelihood function logπ(y1:t |θ) in (5) can be
obtained by

logπ(y1:t |θ) = ct + gt,θ +
1
2
bTt µt|θ −

Nt
2

log(2πσ 2
w), (11)

where

ct = ct−1 −
1

2σ 2
w

N
i=1

y2t,i, c0 = 0,

gt|θ = gt−1|θ −
1
2

N
i=1

log

1 +

1
σ 2

w

uT
t,iht,i|θ


, g0|θ = 0,

with ht,i|θ defined in (10).
Proof. See Appendix.

The computation of the likelihood function is scalable as
follows.

Lemma 7. For a given θ ∈ Θ , the log likelihood function, i.e.,
logπ(y1:t |θ) can be updated in O(1).
Proof. The result follows directly from Proposition 6.

4.3. Sequential update on predictive distribution

Combining the results in Lemmas 5, 7, and (6), (7), we summa-
rize our results in the following theorem.
Theorem 8. The predictive distribution in (6) (or the predictive mean
and variance in (7)) can be obtained in O(1) as time t increases.

The proposed sequential Bayesian prediction algorithm is
summarized in Table 1.

5. Distributed prediction algorithm

In this section, we first briefly review the distributed computa-
tion algorithms. We then propose a distributed approach to effec-
tively implement the sequential Bayesian predictive algorithm for
a special case.

5.1. Distributed computation

In this subsection, we briefly review two useful methods to
convert the centralized sequential prediction algorithm in Table 1
into a distributed algorithm for a mobile sensor network.

5.1.1. Jacobi over-relaxation method
The Jacobi over-relaxation (JOR) (Bertsekas & Tsitsiklis, 1999)

method provides an iterative solution of a linear system Ax = b,
where A ∈ RN×N is a nonsingular matrix and x, b ∈ RN . If agent i
knows the rowi(A) ∈ RN and bi, and aij = (A)ij = 0 if agent i and
agent j are not neighbors, then the recursion is given by

x(k+1)
i = (1 − h)x(k)

i +
h
aii


bi −


j∈Ni

aijx
(k)
j


. (12)

This JOR algorithm converges to the solution of Ax = b from any
initial condition if h < 2/N (Cortés, 2009). At the end of the algo-
rithm, agent i knows the i-th element of x = A−1b.

In the case where the size of the matrix A is much larger than
the number of agents N , and each agent knows multiple rows of A,
a similar algorithm can be derived.

5.1.2. Discrete-time average consensus
The discrete-time average consensus (DAC) provides a way to

compute the arithmetic mean of elements in the vector c ∈ RN .
Assume the graph is connected. If agent i knows the i-th element of
c , the network can compute the arithmetic mean via the following
recursion (Olfati-Saber, Fax, & Murray, 2007)

x(k+1)
i = x(k)

i + ϵ

j∈Ni

aij(x
(k)
j − x(k)

i ), (13)

with initial condition x(0) = c , where aij = 1 if j and i are neigh-
bors and 0 otherwise, 0 < ϵ < 1/∆, and∆ = maxi(


j≠i aij) is the

maximum degree of the network. After the algorithm converges,
all nodes in the network know the average of c , i.e.,

n
i=1 ci/N .

In the case where the size of c is much larger than the number
of agents N , and each agent knows multiple elements of c , a sum-
mation within each agent can be performed beforehand.

5.2. Distributed implementation

To design a distributed version of the proposed algorithm, we
make the following assumptions for a robotic sensor network with
limited resources:

A1. The mean values of the field are known to be µ(si) = 0, i.e.,
p = 0 and Qx|θ = Qη|θ ∈ Rn×n.

A2. The extended spatial field containing n spatial sites is parti-
tioned into N subregions. Each agent is in charge of one subre-
gion as shown in Fig. 4. Notice that each agent can only move
within a part of the subregion that belongs to the real spatial
field F∗.
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Table 1
Sequential Bayesian predictive algorithm.

A3. Agent i knows certain rows of Q and elements of b, denoted by
Q [i] and b[i] respectively, the indices ofwhich correspond to the
spatial sites within its subregion. If agent i and agent j are not
neighbors, then the sub-matrix Q [i][j] is zero. N agents collec-
tively have the knowledge of all rows of Q and all n elements
of b.

A4. Each agent can only communicate with its neighbors.

The distributed prediction algorithm can be obtained similarly
as the centralized algorithm (Table 1). In the distributed algorithm,
the linear equations in Steps 7 and 14 can be solved in a distributed
fashion by using the Jacobi over-relaxation method (Section 5.1.1)
with assumption A4. In Step 15, the third term in the expression of
the likelihood function can be easily evaluated using the discrete-
time average consensus algorithm described in Section 5.1.2. At
the end of the algorithm (Steps 18 and 19), each agent obtains the
mean and variance on the sites within its own subregion.

Remark 9. By assumptions A2 and A3, each agent is in charge of
the computation for the spatial sites within its own subregion.
1

2

3

4

5

Fig. 4. Partition of the extended field Q .

Therefore, the partition of the field determines the computational
power required for each agent. The partitioning could be created
according to the agents’ computational capability, for all agents
to finish each step in more or less same time. Such an intelligent
partitioning could be done by a load balancing algorithm in a
distributed manner, for example, one as shown in Durham, Carli,
Frasca, and Bullo (2009). In this case, if an agent is equipped with
a more powerful computer than others, then a larger subregion
would be assigned to this agent.

6. Adaptive sampling

In the previous section, we have designed a sequential Bayesian
prediction algorithm and its distributed version for estimating the
scalar field at time t . In this section, we propose an adaptive sam-
pling strategy for finding most informative sampling locations at
time t + 1 for mobile sensing agents in order to improve the qual-
ity of prediction and reduce the uncertainty in hyper parameters
simultaneously.

In our previous work (Xu et al., 2011), we have proposed us-
ing the conditional entropy H(z∗|θ = θ̂t , y1:t+1) as an optimality
criterion, where θ̂t = argmaxθ π(θ |y1:t) is the maximum a poste-
riori (MAP) estimate based on the cumulative observations up to
current time t . Although this approach greatly simplifies the com-
putation, it does not count for the uncertainty in estimating the
hyperparameter vector θ .

In this paper, we propose to use the conditional entropy
H(z∗, θ |ỹ, y1:t)which represents the uncertainty remaining in both
random vectors z∗ and θ by knowing future measurements in the
random vector ỹ. Notice that the measurements y1:t have been
observed and treated as constants. It can be obtained by
H(z∗, θ |ỹ, y1:t) = H(z∗|θ, ỹ, y1:t) + H(θ |ỹ, y1:t)

= H(z∗|θ, ỹ, y1:t) + H(ỹ|θ, y1:t)
+H(θ |y1:t) − H(ỹ|y1:t).

Notice that we have the following Gaussian distributions (the
means will not be exploited and hence not shown here):
z∗|θ, ỹ, y1:t ∼ N (·, Σz∗|θ,ỹ,y1:t ),

ỹ|θ, y1:t ∼ N (·, Σỹ|θ,y1:t ),

ỹ|y1:t
approx
∼ N (·, Σỹ|y1:t ),

in which the last one is approximated by a Gaussian distribution
withmean and variance computed as in (7). Moreover, the entropy
H(θ |y1:t) = c is a constant since y1:t is known. Since the entropy
for a multivariate Gaussian distribution has a closed-from expres-
sion (Cover & Thomas, 2006), we have

H(z∗, θ |ỹ, y1:t) =


ℓ

1
2
log


(2πe)n∗ det(Σz∗|θℓ,ỹ,y1:t )


π(θℓ|y1:t)

+


ℓ

1
2
log


(2πe)N det(Σỹ|θℓ,y1:t )


π(θℓ|y1:t)

−
1
2
log


(2πe)N det(Σỹ|y1:t )


+ c.
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a b c

Fig. 5. Posterior distributions of θ , i.e., π(θ |y1:t ), at (a) t = 1, (b) t = 5, and (c) t = 20 using H(z∗, θ |ỹ, y1:t ) as the optimality criterion.
It can also be shown that

log det(Σz∗|θℓ,ỹ,y1:t ) = log det(M−1
(S∗))

= log det(M(−S∗)) − log det(M),

where M = Qt+1|θℓ
and M(S∗) denotes the submatrix of M formed

by the first 1 to n∗ rows and columns (recall that S∗ = {s1, . . . ,
sn∗

}). Notice that the term log det(Qt+1|θℓ
)(−S∗) is a constant since

agents only sample at S∗. Hence, the optimal sampling locations at
time t+1 can be determined by solving the following optimization
problem

qt+1 = arg min
{q̃i∈Rt,i}

H(z∗, θ |ỹ, y1:t)

= arg min
{q̃i∈Rt,i}


ℓ

− log det(Qt+1|θℓ
)π(θℓ|y1:t)

+


ℓ

log det(Σỹ|θℓ,y1:t )π(θℓ|y1:t) − log det(Σỹ|y1:t ),

where Rt,i = {s | ∥s − qt,i∥ ≤ r, s ∈ S∗} (in which r ∈ R>0 is the
maximum distance an agent can move between time instances) is
the reachable set at time t . This combinatorial optimization prob-
lem can be solved using a greedy algorithm, i.e., finding the sub-
optimal sampling locations for agents in sequence.

7. Simulation

In this section, we demonstrate the effectiveness of the pro-
posed sequential Bayesian inference algorithm and the adaptive
sampling strategy through a numerical experiment.

Consider a spatial field introduced in Example 1. Themean func-
tion is a constantβ = 20.We choose the precisionmatrixQx|θ with
hyperparameters α = 0.01 equivalent to a bandwidth ℓ = 1/

√
α

= 10, and κ = 1 equivalent to a vertical scale σ 2
f = 1/(4πακ) ≈

8. The numerically generated field is shown in Fig. 6(a). The pre-
cision matrix T of β is chosen to be 10−4. The measurement noise
level σw = 0.2 is assumed to be known. The support of the prior
distribution is chosen to be α ∈ {0.000625, 0.0025, 0.01, 0.04,
0.16} and κ ∈ {0.0625, 0.25, 1, 4, 16}. Notice that the support
forα is chosen such that the bandwidth is containedwithin 2.5 and
40, which is very likely for a field F of size 100 × 50. And the se-
lected κ together with α cover a huge selection of σ 2

f . The discrete
uniform prior distribution is chosen. N = 5 mobile sensing agents
takemeasurements at time t ∈ Z>0, starting from locations shown
in Fig. 6(b) (as white dots). The maximum distance each agent can
travel between time instances is chosen to be r = 5.

Fig. 6 shows the predicted fields and the prediction error vari-
ances at times t = 1, 5, 20. It can be seen that agents try to cover
the field of interest as time evolves. The predicted field (the pre-
dictive mean) gets closer to the true field (see Fig. 6(a)) and the
prediction error variances become smaller as more observations
are collected. Fig. 5 shows the posterior distribution of the hyper-
parameters in θ . Clearly, as more measurements are obtained, this
posterior distribution becomes peaked at the true value (1, 0.01).
Fig. 7(a) shows the predicted distribution of the estimated mean β
as time evolves. In Fig. 7(b), we can see that the RMS error com-
puted via

rms(t) =

 1
n∗

n∗
i=1

(µzi|y1:t − zi)2,

decreases as time increases, which shows the effectiveness of the
proposed scheme.

Remark 10. For comparison, we also ran the same simulation un-
der the same conditions except using H(z∗|θ̂t , ỹ, y1:t) as the opti-
mality criterion instead. The estimated β and the RMS error are
shown in Fig. 9. The estimated θ at time t = 5 is shown in
Fig. 8. Compared to Fig. 5(b), we can see that the results using
H(z∗, θ |ỹ, y1:t) as the optimality criterion are slightly better in the
sense that θ converges to the true value faster. The RMS errors
between the two criteria are not much different for our simula-
tion setup as illustrated by Figs. 7(b) and 9(b). These observations
from the two simulation results are expected since both the cri-
teria minimize the uncertainty in z∗ while the proposed criterion
H(z∗, θ |ỹ, y1:t) minimizes the uncertainty in θ in addition. Using
H(z∗, θ |ỹ, y1:t) could potentially be more useful when the uncer-
tainty level in θ is large.

To show the robustness of the proposed algorithmwith respect
to the selection of the support (the discrete prior distribution), we
implemented the algorithm using exactly same support for the
hyperparameters. Notice that this time the field is generated with
α = 0.02 and κ = 0.5 which are not on the discrete support. The
root mean square error is shown in Fig. 10. As can be seen, even
if the true hyperparameter vector is not included in the discrete
prior, the prediction is comparable.

Next, we applied our algorithm on a general case in which the
true field is generated according to

z(j) = 20 + 10 exp


∥s(j) − [30, 20]T∥
20



+ 8 exp


∥s(j) − [80, 40]T∥
15


.
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a

b c

d e

f g

Fig. 6. The true field is shown in (a). Predicted fields at (b) t = 1, (d) t = 5, and (f) t = 20. Prediction error variances at (c) t = 1, (e) t = 5, and (g) t = 10. This result is
obtained by using the optimality criterion H(z∗, θ |ỹ, y1:t ). The trajectories of agents are shown as white circles with the current locations shown as white dots.
a b

Fig. 7. (a) Estimated β , and (b) root mean square error, using H(z∗, θ |ỹ, y1:t ) as the optimality criterion.
As we can see in Fig. 11, the prediction is reasonably good with the
same discrete prior distribution.
The most important contribution is that the computation time
at each time step does not grow as the number of measurements
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Fig. 8. Posterior distributions of θ , i.e., π(θ |y1:t ), at t = 5 using H(z∗|θ̂t , ỹ, y1:t ) as
the optimality criterion.

increases. For this illustrative simulation example, this fixed run-
ning time using Matlab, R2009b (MathWorks) on a Mac (2.4 GHz
Intel Core 2 Duo Processor) is about 30 s which is fast enough for
real-world implementation.

8. Conclusion

We have discussed the problem of predicting a large scale spa-
tial field using successive noisymeasurements obtained by amulti-
agent system. We modeled the spatial field of interest using a
GMRF and designed a sequential prediction algorithm for comput-
ing the exact predictive inference from a Bayesian point of view.
The proposed algorithm is computationally efficient and scalable
as the number ofmeasurements increases. A distributed prediction
algorithm was also developed for a special case such that the pre-
diction can be computedwithout a central station.We designed an
adaptive sampling algorithm for agents to find the sub-optimal lo-
cations in order to minimize the prediction error and reduce the
uncertainty in hyperparameters simultaneously. The illustrative
simulation results suggested that our computationally efficient al-
gorithms can be used for robotic sensors under realistic situations,
e.g., large surveillance regions. Future work will consider the ap-
proximate Bayesian inference with a continuous prior on the hy-
perparameter vector.
Fig. 10. The root mean square error for the robustness test, using H(z∗|θ̂t , ỹ, y1:t )
as the optimality criterion.
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Appendix. Proof of Proposition 6

Proof. The inverse of the covariancematrix R1:t can be obtained by

R−1
1:t = (AT

1:tQ
−1
0|θ A1:t + P1:t)−1

= P−1
1:t − P−1

1:t A
T
1:t(Q0|θ + A1:tP−1

1:t A
T
1:t)

−1A1:tP−1
1:t

= P−1
1:t − P−1

1:t A
T
1:tQ

−1
t|θ A1:tP−1

1:t .

Similarly, the log determinant of the covariance matrix Σ1:t can be
obtained by

log det R1:t = log det(AT
1:tQ

−1
0|θ A1:t + P1:t)

= log det

I +

1
σ 2

w

AT
1:tQ

−1
0|θ A1:t


+ Nt log σ 2

w

= log det


Q0|θ +

1
σ 2

w

t
τ=1

N
i=1

uτ ,iuT
τ ,i


− log det(Q0|θ ) + Nt log σ 2

w

=

t
τ=1

log(1 + uT
τQ

−1
τ−1|θuτ ) + Nt log σ 2

w.
a b

Fig. 9. (a) Estimated β , and (b) root mean square error, using H(z∗|θ̂t , ỹ, y1:t ) as the optimality criterion.
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a

b c

d e

f g

Fig. 11. The simulation results for a general field. True field is shown in (a). Predicted fields at (b) t = 1, (d) t = 5, and (f) t = 40. Prediction error variances at (c) t = 1,
(e) t = 5, and (g) t = 40. This result is obtained by using the optimality criterion H(z∗, θ |ỹ, y1:t ). The trajectories of agents are shown as white circles with the current
locations shown as white dots.
Hence, we have

logπ(y1:t |θ) = −
1
2
yT1:tR

−1
1:t y1:t −

1
2
log det R1:t −

Nt
2

log 2π

= −
1
2
yT1:tP

−1
1:t y1:t +

1
2
bTt µt|θ

−
1
2

t
τ=1

N
i=1

log(1 + uT
τ ,iB

−1
τ ,i|θuτ ,i)

−
Nt
2

log(2πσ 2
w),

which completes the proof.
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