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Abstract—In this paper, we consider mobile sensor networks
that use spatiotemporal Gaussian processes to predict a wide range
of spatiotemporal physical phenomena. Nonparametric Gaussian
process regression that is based on truncated observations is pro-
posed for mobile sensor networks with limited memory and compu-
tational power. We first provide a theoretical foundation of Gaus-
sian process regression with truncated observations. In particular,
we demonstrate that prediction using all observations can be well
approximated by prediction using truncated observations under
certain conditions. Inspired by the analysis, we then propose a cen-
tralized navigation strategy for mobile sensor networks to move in
order to reduce prediction error variances at points of interest. For
the case in which each agent has a limited communication range, we
propose a distributed navigation strategy. Particularly, we demon-
strate that mobile sensing agents with the distributed navigation
strategy produce an emergent, swarming-like, collective behavior
for communication connectivity and are coordinated to improve
the quality of the collective prediction capability.

Index Terms—Distributed algorithms, Gaussian processes, mo-
bile sensor networks.

I. INTRODUCTION

IN RECENT years, because of global climate changes, more
environmental scientists have become interested in chang-

ing ecosystems over vast regions on land and in oceans and
lakes. In order to meet such demands, it is necessary to de-
velop autonomous robotic systems that can perform a series of
tasks, such as estimation, prediction, monitoring, tracking, and
removal of a scalar field of interest undergoing often complex
transport phenomena. In this paper, we consider the problem
of the prediction of spatiotemporal fields by the use of mobile
sensor networks.
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Significant enhancements have been made in the area of mo-
bile sensor networks. Emerging technologies have been reported
on the coordination of mobile sensing agents [1]– [6]. Mobile
sensing agents form an ad hoc wireless communication network
in which each agent usually operates under a short communi-
cation range, with limited memory and computational power.
Mobility in a sensor network can increase its sensing cover-
age both in space and time and robustness against dynamic
changes in the environment. The mobility of mobile agents
can be designed for the optimal sampling of the field of in-
terest. Recently, in [7], mobile sensor networks that optimize
ocean sampling performance that is defined in terms of uncer-
tainty in a model estimate of a sampled field have been devel-
oped. However, this approach optimized the collective patterns
of mobile agents that are parameterized by a restricted num-
ber of parameters rather than optimizing individual trajectories.
In [8], distributed learning and cooperative control were devel-
oped for multiagent systems to discover peaks of the unknown
field based on the recursive estimation of an unknown field. A
typical sensor-placement technique [9], which puts sensors at
the locations where the entropy is high, tends to place sensors
along the borders of the area of interest [10]. In [10], Krause
et al. showed that seeking sensor placements that are most in-
formative about unsensed locations is NP-hard, and they pre-
sented a polynomial-time approximation algorithm by exploita-
tion of the submodularity of mutual information. In a similar
approach, in [11], an efficient planning of informative paths for
multiple robots that maximizes the mutual information has been
presented.

To find optimal locations that predict the phenomenon best,
one needs a model of the spatiotemporal phenomenon. To this
end, we use the Gaussian process to model fields that are under-
going transport phenomena. Nonparametric Gaussian process
regression (or kriging in geostatistics) has been widely used as
a nonlinear regression technique to estimate and predict geosta-
tistical data [12]–[15]. A Gaussian process with an infinite num-
ber of random variables over a continuum space can be viewed
as a generalization of a Gaussian probability distribution with a
finite number of random variables. Gaussian process regression
enables us to predict physical values, such as temperature and
plume concentration, at any point with a predicted uncertainty
level efficiently. For instance, near-optimal static-sensor place-
ments with a mutual information criterion in Gaussian processes
were proposed in [10], [16]. A distributed kriged Kalman filter
for spatial estimation that is based on a mobile sensor network
was developed in [17]. Multiagent systems that are versatile for
various tasks by the exploitation of predictive posterior statistics
of Gaussian processes were developed in [18] and [19].
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Fig. 1. Robot is supposed to predict a scalar value at x∗ (denoted by a red star)
based on cumulative n spatiotemporal observations (denoted by blue crosses).
Near-optimal prediction can be obtained by the use of truncated observations,
e.g., the last m observations. In this case, x = [sx sy t]T .

The motivation of our study is twofold. First, the main rea-
son why the nonparametric prediction by the use of Gaussian
processes is not popular for resource-constrained multiagent
systems is the fact that the optimal prediction must use all cumu-
latively measured values [13], [14]. In this case, a robot needs to
compute the inverse of the covariance matrix whose size grows
as it collects more measurements. With this operation, the robot
will run out of memory quickly. Therefore, it is necessary to
develop a class of prediction algorithms by the use of spa-
tiotemporal Gaussian processes under a fixed memory size. The
spacetime Kalman filter model that is proposed in [20] and [21]
and utilized in [19] partially solved this problem by modeling
the spatiotemporal field as a sum of a zero-mean Gaussian pro-
cess, which is uncorrelated in time, and a time-varying mean
function (see [21, eqs. (6) and (12)]). The zero-mean Gaussian
process represents a spatial structure that is independent from
one time point to the next as described in [21] by the assump-
tion that the dynamical environmental process is governed by a
relatively large time scale. This formulation in turn provides the
Markov property in time, which makes the optimal prediction
recursive in time. However, the value of a temporal mean func-
tion at a point (realized by a stable linear system) consists of a
linear sum of colored white noises and transient responses that
converge to zero values exponentially fast [19], which cannot
represent a wide range of spatiotemporal phenomena in a fully
nonparametric manner [15]. A simple way to cope with this
dilemma is to design a robot so that it predicts a spatiotemporal
Gaussian process at the current (or future) time based on trun-
cated observations, e.g., the last m observations from a total of
n observations as shown in Fig. 1. This seems intuitive in the
sense that the last m observations are more correlated than the
other r = n − m observations (see Fig. 1) in order to predict
values at current or future time. Therefore, it is very important
to analyze the performance degradation and tradeoff effects of
prediction based on truncated observations compared with the
one based on all cumulative observations.

The second motivation is to design and analyze distributed
sampling strategies for resource-constrained mobile sensor net-
works. To develop distributed estimation and coordination al-
gorithms for multiagent systems by the use of only local infor-
mation from local neighboring agents has been one of the most
fundamental problems in mobile sensor networks [1], [3]–[6],

[8], [17]. To emphasize practicality and usefulness, it is critical
to synthesize and analyze distributed sampling strategies under
practical constraints, such as measurement noise and a limited
communication range.

The contribution of this paper is as follows. We first present
a theoretical foundation of Gaussian process regression with
truncated observations. In particular, we show that the quality of
prediction based on truncated observations does not deteriorate
much as compared with that of prediction based on all cumula-
tive data under certain conditions. Inspired by the analysis, we
then propose a centralized navigation strategy by the use of trun-
cated observations for resource-constrained mobile sensor net-
works to move in order to minimize a network-performance cost
function. Under a limited communication range, a distributed
navigation algorithm in which each agent uses only local infor-
mation has been proposed. For the distributed strategy, a con-
tinuously differentiable network-performance cost function has
been synthesized to avoid hybrid system dynamics [22] and/or
chattering behaviors when agents lose or gain neighbors. We
demonstrate that the distributed navigation strategy produces an
emergent, swarming-like, collective behavior to maintain com-
munication connectivity among mobile sensing agents.

This paper is organized as follows. In Section II, we intro-
duce spatiotemporal Gaussian processes, and provide the nota-
tions for mobile sensor networks. In Section III, we review the
Gaussian process regression and propose to use only truncated
observations to bound the computational complexity. The error
bounds to use truncated observations are analyzed for prediction
at a single point. A way of selection of a temporal truncation
size is also discussed. To improve the prediction quality, cen-
tralized and distributed navigation strategies for mobile sensor
networks are proposed in Section IV. In Section V, simulation
results illustrate the usefulness of our schemes under different
conditions and parameters.

The standard notation will be used in this paper. Let
R, R≥0 , and Z>0 denote, respectively, the set of real numbers,
the set of non-negative real numbers, and the set of positive inte-
gers. The positive definiteness and the positive semidefiniteness
of a matrix A are denoted by A � 0 and A � 0, respectively.
E denotes the expectation operator and Corr denotes the cor-
relation operator. Let ‖x‖ denote the standard Euclidean norm
(or 2-norm) of a vector x. The induced 2-norm of a matrix A is
denoted by ‖A‖. ‖y‖∞ denotes the infinity norm of a vector y.
The union of sets A and B is denoted by A ∪ B. |A| denotes the
cardinality of a set A. Other notation will be explained in due
course.

II. PRELIMINARIES

In this section, we introduce (spatiotemporal) Gaussian pro-
cesses and robotic sensor networks.

A. Gaussian Processes

A Gaussian process defines a distribution over a space of
functions and it is completely specified by its mean function and
covariance function. A Gaussian process is formally defined as
follows.
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Definition 2.1 (Gaussian process [15]): A Gaussian process
is a collection of random variables, any finite number of which
have a joint Gaussian distribution.

We consider a zero-mean Gaussian process1 z(x) ∈ R that is
written as

z(x) ∼ GP(0, σ2
fK(x,x′)) (1)

where x,x′ ∈ R
d are the inputs. The mean function is assumed

to be zero and the covariance function is defined as σ2
fK(x,x′).

The signal variance σ2
f , which is assumed to be constant across

the input space, gives the overall vertical scale relative to the
mean of the Gaussian process in the output space. The corre-
lation between z(x) and z(x′), i.e., Corr(z(x), z(x′)), is given
by2

K(x,x′) = exp
(
−‖x − x′‖2

2σ2
�

)
(2)

where σ� is the length scale that determines the decreasing rate
of the correlation between two inputs as the distance between
them increases.

A spatiotemporal Gaussian process z(s, t) is a special
case of the Gaussian process that is defined in (1), where
x = [sT t]T = [sx sy t]T ∈ R

2 × R≥0 . As in our previ-
ous work [23], we use the following generalized correla-
tion function K(x,x′) with a hyperparameter vector θ :=
[σ2

f σx σy σt ]T :

K(x,x′) = Ks(s, s′)Kt(t, t′)

= exp

⎛
⎝−

∑
�∈{x,y}

(s� − s′�)
2

2σ2
�

⎞
⎠ exp

(
− (t − t′)2

2σ2
t

)

(3)

where s, s′ ∈ R
2 are the space locations, and t, t′ ∈ R≥0 are

the time indices. {σx, σy} and σt are length scales for space
and time, respectively. Equation (3) shows that points close in
the measurement space and time indices are strongly correlated
and produce similar values. A spatially isotropic version of the
correlation function in (3) has been used in [7].

The hyperparameters of a Gaussian process can be estimated
a priori by the maximization of the likelihood function as shown
in [23]. In this paper, we assume that the hyperparameters are
known a priori.

B. Mobile Sensor Networks

Let N be the number of sensing agents that are distributed
over a 2-D surveillance region Q ⊂ R

2 . Assume that Q is a
compact set. The identity of each agent is indexed by i ∈ I :=

1A Gaussian process with a nonzero mean can be treated by a change of
variables. Even without a change of variables, this is not a drastic limitation,
since the mean of the posterior process is not confined to zero [15].

2The squared exponential correlation function is used in this paper. How-
ever, the analysis and algorithms are not restricted to the squared exponential
correlation function. Any correlation function can be used instead if it exhibits
the property that the correlation decays as the distance between input points
increases.

{1, 2, . . . , N}. Let qi(t) ∈ Q be the position of the ith sensing
agent at time t.

Suppose, at time tk ∈ T := {t1 , t2 , . . .} ⊂ R≥0 , agent i takes
a noise-corrupted measurement yi(tk ) at its current position
qi(tk ), i.e.

yi(tk ) = z(qi(tk ), tk ) + wi

where wi is a zero-mean Gaussian white noise with variance
σ2

w .

III. GAUSSIAN PROCESS REGRESSION WITH

TRUNCATED OBSERVATIONS

In this section, we review Gaussian process regression and
point out the main hurdle to use it for mobile sensor networks.
We propose to use truncated observations to effectively ad-
dress this issue and analyze the error bounds to use truncated
observations. A way to select a temporal truncation size for
spatiotemporal Gaussian process regression is also presented.

A. Gaussian Process Regression

Suppose we have n noise-corrupted observations D =
{(x(i) , y(i)) | i = 1, . . . , n}. Then, the collection of observa-
tions y = [y(1) · · · y(n) ]T ∈ R

n has the Gaussian distribution

y ∼ N (0, σ2
f C)

where C = Corr(y,y) ∈ R
n×n is the correlation matrix of y,

which is obtained by (C)ij = K(x(i) ,x(j )) + δij /γ, where γ =
σ2

f /σ2
w is the SNR, and δij denotes the Dirac delta function. We

can predict the value, i.e., z∗ := z(x∗), of the Gaussian process
at a point x∗ as [15]

ẑ∗ = kT C−1y (4a)

with a prediction error variance that is given by

σ2
ẑ∗ = σ2

f (1 − kT C−1k) (4b)

where k = Corr(y, z∗) ∈ R
n is the correlation vector between

y and z∗, which is obtained by (k)j = K(x(j ) ,x∗). Notice that
the prediction mean in (4a) and its prediction error variance in
(4b) require the inversion of the correlation matrix C, whose
size depends on the number of observations n.

As mentioned in Section I, one drawback of Gaussian pro-
cess regression is that its computational complexity and mem-
ory space increase as more measurements are collected, which
makes the method prohibitive for robots with limited memory
and computing power. To overcome this increase in complex-
ity, a number of approximation methods for Gaussian process
regression have been proposed. In particular, the sparse greedy
approximation method [24], the Nystrom method [25], the infor-
mative vector machine [26], the likelihood approximation [27],
and the Bayesian committee machine [28] have been shown to
be effective for many problems. However, these approximation
methods have been proposed without theoretical justifications.

In general, if measurements are taken from nearby locations
(or spacetime locations), correlation between measurements is
strong and correlation exponentially decays as the distance
between locations increases. If the correlation function of a
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Gaussian process has this property, intuitively, we can make a
good prediction at a point of interest by the use of only measure-
ments nearby. In the next Section III-B, we formalize this idea
and provide a theoretical foundation to justify Gaussian process
regression with truncated observations that is proposed in this
paper.

B. Error Bounds in Using Truncated Observations

Without loss of generality, we assume that the first m out of
n observations are used to predict z∗. Let r = n − m, ym =
[y(1) · · · y(m ) ]T , and yr = [y(m+1) · · · y(n) ]T . Then, C and k
can be represented as

C =
[

Cm Kmr

KT
mr Cr

]
and k =

[
km

kr

]
.

By the use of truncated observations, we can predict the value
z∗ as

ẑ′∗ = kT
mC−1

m ym (5a)

with a prediction error variance that is given by

σ2
ẑ ′
∗
= σ2

f (1 − kT
mC−1

m km ). (5b)

The following result shows the gap between predicted values by
the use of truncated measurements and all measurements.

Theorem 3.1: Consider a Gaussian process that is defined in
(1); we have

ẑ∗ − ẑ′∗ = (kr − KT
mrC

−1
m km )T

× (Cr − KT
mrC

−1
m Kmr )−1

× (yr − KT
mrC

−1
m ym ) (6a)

and

σ2
ẑ∗ − σ2

ẑ ′
∗
= −σ2

f (kr − KT
mrC

−1
m km )T

× (Cr − KT
mrC

−1
m Kmr )−1

× (kr − KT
mrC

−1
m km )

< 0. (6b)

Proof: See Appendix A. �
Corollary 3.2: The prediction error variance σ2

ẑ ′
∗

is a nonin-
creasing function of m.

Proof: The proof is straightforward from Theorem 3.1 by
letting n = m + 1. �

By the consideration of an ideal case in which the measure-
ments ym are not correlated with the remaining measurements
yr , we have the following result.

Proposition 3.3: Under the assumptions that are used in
Theorem 3.1 and for given yr ∼ N (0,Cr ), if Kmr = 0, then
ẑ∗ − ẑ′∗ = kT

r C−1
r yr and σ2

ẑ∗
− σ2

ẑ ′
∗
= −σ2

f k
T
r C−1

r kr . In addi-
tion, we also have

|ẑ∗ − ẑ′∗| ≤ ‖kT
r C−1

r ‖
√

rȳ(p1)

with a nonzero probability p1 . For a desired p1 , we can find
ȳ(p1) by solving

p1 =
∏

1≤i≤r

(
1 − 2φ

(
− ȳ(p1)

λ
1/2
i

))
(7)

where φ is the cumulative normal distribution, and {λi | i =
1, . . . , r} are the eigenvalues of Cr = UΛUT with a unitary
matrix U, i.e., Λ = diag(λ1 , . . . , λr ).

Proof: See Appendix B. �
Hence, if the magnitude of Kmr is small, then the truncation

error from the usage of truncated measurements will be close
to kT

r C−t
r yr . Furthermore, if we want to reduce this error, we

want kr to be small, i.e., when the covariance between z∗ and
the remaining measurements yr is small. In summary, if 1) the
correlation between the measurements ym and the remaining
measurements yr is small and 2) the correlation between z∗ and
the remaining measurements yr is small, then the truncation
error is small, and ẑ′∗ can be a good approximation to ẑ∗. This
idea is formalized in a more general setting in the following
theorem.

Theorem 3.4: Consider a zero-mean Gaussian process that is
defined in (1) with the covariance function (2) and assume that
we have collected n observations, i.e., y(1) , . . . , y(n) . Suppose
thatKmr is small enough, such that ‖KT

mrC
−1
m km‖ ≤ ‖kr‖ and

‖KT
mrC

−1
m ym‖ ≤ δ2‖yr‖, for some δ2 > 0. Given 0 < p2 < 1,

choose ȳ(p2), such that maxn
i=m+1 |y(i) | < ȳ(p2) with proba-

bility p2 and ε > 0 such that ε < 2γr(1 + δ2)ȳ(p2), where γ is
the SNR. For x∗, if the last r = n − m data points satisfy

‖x(i) − x∗‖2 > 2σ2
� log

(
2γ

1
ε
r(1 + δ2)ȳ(p2)

)

then, with probability p2 , we have

|ẑ∗ − ẑ′∗| < ε.

Proof: See Appendix C. �
Remark 3.5: The last part of Proposition 3.3 and Theorem 3.4

seek a bound for the difference between predicted values by the
use of all and truncated observations with a given probability
since the difference is a random variable.

Example 3.6: We provide an illustrative example to show
how to use the result of Theorem 3.4 as follows. Consider a
Gaussian process that is defined in (1) and (2) with σ2

f = 1,
σ� = 0.2, and γ = 100. If we have any randomly chosen ten
samples (m = 10) within [0 1]2 and we want to make a pre-
diction at x∗ = [1 1]T , we choose ȳ(p2) = 2σf = 2, such that
maxn

i=m+1 |y(i) | < ȳ(p2) with probability p2 = 0.95. Accord-
ing to Theorem 3.4, if we have an extra sample x(11) (r = 1) at
[2.5 2.5]T , which satisfies the condition ‖x(11) − x∗‖ > 0.92,
then the difference in prediction using with and without the extra
sample is less than ε = 0.01 with probability p2 = 0.95.

Example 3.7: Motivated by the results presented, we take a
closer look at the usefulness of using a subset of observations
from a sensor network for a particular realization of the Gaussian
process. We consider a particular realization that is shown in
Fig. 2, where crosses represent the sampling points of a Gaussian
process that is defined in (1) and (2) with σ2

f = 1, σ� = 0.2, and
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Fig. 2. Example of the selection of truncated observations. The parameters
used in the example are σ2

f = 1, σ� = 0.2, σw = 0.1.

TABLE I
PREDICTION MEANS AND VARIANCES USING y, ym , AND yr

γ = 100 over [0 1]2 . We have selected ym as the collection
of observations (blue crosses) within the red circle of a radius
R = 2σ� = 0.4 centered at a point (a red star) located at x∗ =
[0.6 0.4]T . If a measurement is taken outside the red circle,
the correlation between this measurement and the value at x∗
decreases to 0.135. The rest of observations (blue crosses outside
of the red circle) are selected as yr . The prediction results are
shown in Table I. In this particular realization, we have z∗ =
0.539. It can be seen that the prediction means and variances
using only ym are close to the one using all observations. We
also compute the prediction at x∗ with yr which is far from the
true value with a large variance.

The result of Theorem 3.4 and Examples 3.6 and 3.7 all
suggest the usage of observations that are highly correlated with
the point of interest.

C. Selecting a Temporal Truncation Size

In Section III-B, we have obtained the error bounds for the
prediction at a single point. In general, the observations that are
made close to that point are more informative than the others.

For a spatiotemporal Gaussian process, we define η as the
truncation size, and our objective is to use only the observations
made during the last η time steps, i.e., from time tk−η+1 to tk ,
to make prediction at time tk . In general, a small η yields faster
computation but lower accuracy and a large η yields slower
computation but higher accuracy. Thus, the truncation size η
should be selected according to a tradeoff relationship between
accuracy and efficiency.

Next, we show an approach to select the truncation size η
in an averaged performance sense. Given the observations and
associated sampling locations and times (denoted by D, which

depends on η), the generalization error ε(x∗,D) at a point x∗ =
[sT

∗ t∗]T is defined as the prediction error variance σ2
ẑ∗

[29],
[30]. For a given t∗ not knowing user specific s∗ a priori, we
seek to find η that guarantees a low prediction error variance
uniformly over the entire spaceQ, i.e., we want ε(D) = Es∗ [σ

2
ẑ∗

]
to be small [29], [30]. Here, Es∗ denotes the expectation with
respect to the uniform distribution of s∗.

According to Mercer’s theorem, we know that the kernel
function Ks can be decomposed into

Ks(s, s′) =
∞∑

i=1

λiφi(s)φi(s′)

where {λi} and {φi(·)} are the eigenvalues and correspond-
ing eigenfunctions, respectively [30]. In a similar way shown
in [30], the input-dependent generalization error ε(D) for our
spatiotemporal Gaussian process can be obtained as

ε(D) = Es∗

[
σ2

f

(
1 − tr

(
kkT (K + 1/γI)−1))]

= σ2
f

(
1 − tr

(
Es∗ [kkT ](K + 1/γI)−1)) . (8)

We have

Es∗ [kkT ] = ΨΛ2ΨT ◦ ktkT
t (9)

and

K = ΨΛΨT ◦ KtKT
t (10)

where (Ψ)ij = φj (si), (kt)j = Kt(t(j ) , t∗), (Kt)ij =
Kt(t(i) , t(j )), and (Λ)ij = λiδij . δij denotes the Dirac delta
function. “◦” denotes the Hadamard (element-wise) prod-
uct [30]. Hence, the input-dependent generalization error ε(D)
can be computed analytically by plugging (9) and (10) into
(8). Notice that ε(D) is a function of inputs (i.e., the sampling
locations and times). To obtain an averaged performance level
without the knowledge of the algorithmic sampling strategy
a priori, we use an appropriate sampling distribution, which
models the stochastic behavior of the sampling strategy. Thus,
further averaging over the observation set D with the sampling
distribution yields ε(η) = ED[ε(D)], which is a function of the
truncation size η only. This averaging process can be done by
the use of Monte Carlo methods. Then, η can be chosen based
on the averaged performance measure ε(η) under the sampling
distribution.

An alternative way, without the usage of the eigenvalues
and eigenfunctions, is to directly and numerically compute
ε(D) = Es∗ [σ

2
ẑ∗

] uniformly over the entire space Q with random
sampling positions at each time step. An averaged generaliza-
tion error with respect to the temporal truncation size can be
plotted by the usage of such Monte Carlo methods. Then, the
temporal truncation size η can be chosen such that a given level
of the averaged generalization error is achieved.

Example 3.8: Consider a problem of selection of a tempo-
ral truncation size η for spatiotemporal Gaussian process re-
gression using observations from nine agents. The spatiotem-
poral Gaussian process is defined in (1) and (3) with σ2

f = 1,
σx = σy = 0.2, σt = 5, and γ = 100 over [0 1]2 . The Monte
Carlo simulation result is shown in Fig. 3. The achieved gen-
eralization error ε(D) is plotted in blue circles with error bars



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 3. Example of selecting a temporal truncation size η. The parameters
used in the example are σ2

f = 1, σx = σy = 0.2, σt = 5, γ = 100.

with respect to the temporal truncation size η. As can be seen,
an averaged generalization error (in blue circles) under 0.1 can
be achieved by the use of observations taken from last ten time
steps.

Notice that the prediction error variances can be significantly
minimized by the optimal selection of the sampling positions.
Hence, the selected η guarantees at least the averaged perfor-
mance level of the sensor network when the optimal sampling
strategy is used.

By the use of a fixed truncation size η, the computational
complexity and memory space required to make prediction [i.e.,
to evaluate (4a) and (4b)] do not increase as more measurements
are collected. Our next objective is to improve the quality of
the prediction by the careful selection of the future sampling
positions for the mobile sensor network.

IV. NAVIGATION STRATEGIES

At time tk , the goal of the mobile sensor network is to make
prediction at prespecified points of interest {(vj , τj ) | j ∈ J }
indexed by J := {1, . . . ,M}. From here on, points of interest
will be denoted as target points. The introduction of target points
is motivated by the fact that the potential environmental concerns
should be frequently monitored. For instance, the target points
can be assigned at the interface of a factory and a lake, sewage
systems, or polluted beaches. Thus, the introduction of target
points, which can be arbitrarily specified by a user, provides
a flexible way to define a geometrical shape of a subregion of
interest in a surveillance region. Notice that the target points
can be changed by a user at any time. In particular, we allow
that the number of target points M can be larger than that of
agents N , which is often the case in practice. The prediction of
zj := z(vj , τj ) of the Gaussian process at a target point (vj , τj )
can be obtained as in (4a) and (4b).

A. Centralized Navigation Strategy

Consider a case in which a central station receives collective
measurements from all N mobile sensors and performs the pre-
diction. We denote the collection of positions of all N agents at
time t as q(t), i.e.,

q(t) = [q1(t)T · · ·qN (t)T ]T .

The collective measurements from all N mobile sensors at time
t ∈ T is denoted by yk := [y1(tk ) · · · yN (tk )]T . For notational
simplicity, we also define the cumulative measurements that
have been taken from time tk−η+1 to tk as

yk−η+1:k = [yT
k−η+1 · · ·yT

k ]T .

Let the central station discard the oldest set of measurements
yk−η+1 after making the prediction at time tk . At the next time
index tk+1 , by the usage of the remained observations yk−η+2:k
in the memory along with new measurements yk+1 from all
N agents at time tk+1 , the central station will predict z(s∗, t∗)
evaluated at target points {(vj , τj )}M

j=1 . Hence, agents should
move to the most informative locations to take measurements at
time tk+1 [10].

For notational simplicity, let ȳ be the remained observations,
i.e., ȳ := yk−η+2:k , and ỹ be the measurements that will be
taken at positions q̃ = [q̃T

1 · · · q̃T
N ]T ∈ QN and time tk+1 . In

contrast with the information-theoretic control strategies using
the conditional entropy or the mutual information criterion [10],
[31], in this paper, the mobility of the robotic sensors will be
designed such that they directly minimize the average of the
prediction error variances over target points, i.e.,

Jc(q̃) =
1
|J |

∑
j∈J

σ2
ẑ j

(q̃) (11)

where |J | = M is the cardinality of J . The prediction error
variance at each of M target points is given by

σ2
ẑ j

(q̃) = σ2
f

(
1 − kj (q̃)T C(q̃)−1kj (q̃)

)
∀j ∈ J

where kj (q̃) and C(q̃) are defined as

kj (q̃) =
[

Corr(ȳ, zj )
Corr(ỹ, zj )

]

C(q̃) =
[

Corr(ȳ, ȳ) Corr(ȳ, ỹ)
Corr(ỹ, ȳ) Corr(ỹ, ỹ)

]
.

In order to reduce the average of prediction error variances
over target points {(vj , τj )}M

j=1 , the central station solves the
following optimization problem:

q(tk+1) = arg min
q̃∈QN

Jc(q̃). (12)

Notice that in this problem setup, we only consider the constraint
that robots should move within the region Q. However, the
mobility constraints, such as the maximum distance that a robot
can move between two time indices or the maximum speed
with which a robot can travel, can be incorporated as additional
constraints in the optimization problem [17].

The sensor network configuration q(t) can be controlled by
a gradient descent algorithm such that q(t) can move to a local
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minimum of Jc for the prediction at time tk+1 :

dq(t)
dt

= −∇qJc(q(t)) (13)

where ∇xJc(x) denotes the gradient of Jc(x) at x. A critical
point of Jc(q) that is obtained in (13) will be q(tk+1). The
analytical form of ∂σ2

ẑ j
(q̃)/∂q̃i,� , where q̃i,� is the �th element

in q̃i ∈ Q, can be obtained by

∂σ2
ẑ j

(q̃)

∂q̃i,�
= kT

j C−1
(

∂C
∂q̃i,�

C−1kj − 2
∂kj

∂q̃i,�

)

∀i ∈ I, � ∈ {1, 2}.

Other more advanced nonlinear optimization techniques may be
applied to solve the optimization problem in (12) [32].

The centralized sampling strategy for the mobile sensor net-
work with the cost function Jc in (11) is summarized in Table II.
Notice that the prediction in the centralized sampling strategy
uses temporally truncated observations. A decentralized version
of the centralized sampling strategy in Table II may be devel-
oped by the usage of the approach proposed in [33], in which
each robot incrementally refines its decision while intermittently
communicating with the rest of the robots.

B. Distributed Navigation Strategy

Now, we consider a case in which each agent in the sen-
sor network can only communicate with other agents within a
limited communication range R. In addition, no central station
exists. In this section, we present a distributed navigation strat-
egy for mobile agents that uses only local information in order
to minimize a collective network-performance cost function.

The communication network of mobile agents can be rep-
resented by an undirected graph. Let G(t) := (I, E(t)) be an
undirected communication graph such that an edge (i, j) ∈ E(t)
if and only if agent i can communicate with agent j at
time t. We define the neighborhood of agent i at time t by
Ni(t) := {j ∈ I | (i, j) ∈ E(t), j �= i}. In particular, we have

Ni(t) = {j ∈ I | ‖qi(t) − qj (t)‖ < R, j �= i}.

Note that in our definition, “< is used instead of “≤ to decide
the communication range.

At time tk ∈ T , agent i collects measurements {yj (tk ) | j ∈
{i} ∪ Ni(tk )} sampled at {qj (tk ) | j ∈ {i} ∪ Ni(tk )} from its
neighbors and itself. The collection of these observations and the
associated sampling positions in vector forms are denoted byy[i]

k

and q[i](tk ), respectively. Similarly, for notational simplicity,
we also define the cumulative measurements that have been
collected by agent i from time tk−η+1 to tk as

y[i]
k−η+1:k = [(y[i]

k−η+1)
T · · · (y[i]

k )T ]T .

In contrast with the centralized scheme, in the distributed
scheme, each agent determines the sampling points based on
the local information from neighbors. After making the predic-
tion at time tk , agent i discards the oldest set of measurements
y[i]

k−η+1 . At time tk+1 , by the usage of the remained observations

y[i]
k−η+2:k in the memory along with new measurements y[i]

k+1

TABLE II
CENTRALIZED SAMPLING STRATEGY AT TIME tk

from its neighbors in Ni(tk+1), agent i will predict z(s∗, t∗)
evaluated at target points {(vj , τj )}M

j=1 .
For notational simplicity, let ȳ[i] be the remained observations

of agent i, i.e., ȳ[i] := y[i]
k−η+2:k . Let ỹ[i] be the new measure-

ments that will be taken at positions of agent i and its neighbors
q̃[i] ∈ Q|Ni |+1 , and at time tk+1 , where |Ni | is the number of
neighbors of agent i at time tk+1 . The prediction error variance
that is obtained by agent i at each of M target points (indexed
by J ) is given by

σ
2[i]
ẑ j

(q̃[i]) = σ2
f

(
1 − k[i]

j (q̃[i])T C[i](q̃[i])−1k[i]
j (q̃[i])

)

∀j ∈ J

where k[i]
j (q̃[i]) and C[i](q̃[i]) are defined as

k[i]
j (q̃[i]) =

[
Corr(ȳ[i], zj )
Corr(ỹ[i], zj )

]
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C[i](q̃[i]) =
[

Corr(ȳ[i], ȳ[i]) Corr(ȳ[i], ỹ[i])
Corr(ỹ[i], ȳ[i]) Corr(ỹ[i], ỹ[i])

]
. (14)

The performance of agent i can be evaluated by the average of
the prediction error variances over target points, i.e.,

J [i](q̃[i]) =
1
|J |

∑
j∈J

σ
2[i]
ẑ j

(q̃[i]) ∀i ∈ I.

One criterion to evaluate the network performance is the average
of individual performance, i.e.,

J(q̃) =
1
|I|

∑
i∈I

J [i](q̃[i]). (15)

However, the discontinuity of the function J occurs at the mo-
ment of gaining or losing neighbors, e.g., at the set

{q̃ | ‖q̃i − q̃j‖ = R}.

A gradient decent algorithm for mobile robots that minimizes
such J may produce hybrid system dynamics and/or chattering
behaviors when robots lose or gain neighbors.

Therefore, we seek to minimize an upper bound of J that is
continuously differentiable. Consider the following function:

σ̄
2[i]
ẑ j

(q̃[i]) = σ2
f

(
1 − k[i]

j (q̃[i])T C̄[i](q̃[i])−1k[i]
j (q̃[i])

)

∀j ∈ J (16)

where C̄[i](q̃[i]) is defined as

C̄[i](q̃[i]) =
[

Corr(ȳ[i], ȳ[i]) Corr(ȳ[i], ỹ[i])
Corr(ỹ[i], ȳ[i]) Corr(ỹ[i], ỹ[i]) + C̃[i](q̃[i])

]
.

Notice that C̄[i](q̃[i]) is obtained by adding a positive semidef-
inite matrix C̃[i](q̃[i]) to the lower right block of C[i](q̃[i]) in
(14), where

C̃[i](q̃[i]) = diag
(
Φ(di1)−1 , . . . ,Φ(di(|Ni |+1))−1) − 1

γ
I

where dij := ‖q̃i − q̃j‖ is the distance between agents i and
j ∀j ∈ {i} ∪ Ni . Φ : [0, R) �→ (0, γ] is a continuously differ-
entiable function that is defined as

Φ(d) = γφ

(
d + d0 − R

d0

)
(17)

where

φ(h) =

{
1, h ≤ 0
exp

(
−h2

1−h2

)
, 0 < h < 1.

An example of Φ(d), where γ = 100, R = 0.4, and d0 = 0.1,
is shown as the red dotted line in Fig. 4. Notice that if Φ(d) = γ
is used (the blue solid line in Fig. 4), we have C̄[i](q̃[i]) =
C[i](q̃[i]). We then have the following result.

Proposition 4.1: σ̄
2[i]
ẑ j

(q̃[i]) is an upper bound of σ
2[i]
ẑ j

(q̃[i])
∀i ∈ I.

Proof: Let A := C[i](q̃[i]) and B := diag(0, C̃[i](q̃[i])). The
result follows immediately from the fact that (A + B)−1 �
A−1 for any A � 0 and B � 0. �

Fig. 4. Function Φ(d) in (17) with γ = 100, R = 0.4, and d0 = 0.1 is shown
as a red dotted line. The function Φ(d) = γ is shown as a blue solid line.

Hence, we construct a new cost function as

Jd(q̃) =
1
|I|

∑
i∈I

1
|J |

∑
j∈J

σ̄
2[i]
ẑ j

(q̃[i]). (18)

By Proposition 4.1, Jd in (18) is an upper bound of J in (15).
Next, we show that Jd is continuously differentiable when

agents gain or lose neighbors. In doing so, we compute the
partial derivative of Jd with respect to q̃i,� , where q̃i,� is the �th
element in q̃i ∈ Q as follows:

∂Jd(q̃)
∂q̃i,�

=
1
|I|

∑
k∈I

1
|J |

∑
j∈J

∂σ̄
2[k ]
ẑ j

(q̃[k ])

∂q̃i,�

=
1
|I|

∑
k∈{i}∪Ni

1
|J |

∑
j∈J

∂σ̄
2[k ]
ẑ j

(q̃[k ])

∂q̃i,�

∀i ∈ I, � ∈ {1, 2}. (19)

We then have the following.
Proposition 4.2: The cost function Jd in (18) is of class C1 ,

i.e., it is continuously differentiable.
Proof: We need to show that the partial derivatives of Jd

with respect to q̃i,� ∀i ∈ I, � ∈ {1, 2} exist and are continuous.
Without loss of generality, we show that ∂Jd/∂q̃i,� ∀� ∈ {1, 2}
is continuous at any point q̃∗ in the boundary set that is defined
by

Sik := {q̃ | dik = ‖q̃i − q̃k‖ = R}.
First, we consider a case in which q̃ /∈ Sik and dik < R, i.e.,
k ∈ Ni and i ∈ Nk . By the construction of σ̄

2[i]
ẑ j

in (16) using
(17), when we take the limit of the partial derivative, as dik

approaches R from below (as q̃ approaches q̃∗), we have that

lim
di k →R−

∂σ̄
2[i]
ẑ j

(q̃[i])

∂q̃i,�
=

∂σ̄
2[i]
ẑ j

(q̃[i]\q̃k )

∂q̃i,�

lim
di k →R−

∂σ̄
2[k ]
ẑ j

(q̃[k ])

∂q̃i,�
=

∂σ̄
2[k ]
ẑ j

(q̃[k ]\q̃i)

∂q̃i,�
= 0

where q̃[a ]\q̃b denotes the collection of locations of agent a and
its neighbors excluding q̃b . Hence, we have

lim
di k →R−

∂Jd(q̃)
∂q̃i,�

=
∂Jd(q̃∗)
∂q̃i,�

. (20)

Consider the other case in which q̃ /∈ Sik and dik > R, i.e.,
k /∈ Ni and i /∈ Nk . When dik approaches R from above (as q̃
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approaches q̃∗), we have

lim
di k →R+

∂σ̄
2[i]
ẑ j

(q̃[i])

∂q̃i,�
=

∂σ̄
2[i]
ẑ j

(q̃[i])

∂q̃i,�

and hence

lim
di k →R+

∂Jd(q̃)
∂q̃i,�

=
∂Jd(q̃∗)
∂q̃i,�

. (21)

Therefore, from (20) and (21), we have

lim
di k →R−

∂Jd(q̃)
∂q̃i,�

= lim
di k →R+

∂Jd(q̃)
∂q̃i,�

=
∂Jd(q̃∗)
∂q̃i,�

.

This completes the proof due to [34, Th. 4.6]. �
By the use of Jd in (18), a gradient descent algorithm can be

used to minimize the network-performance cost function Jd in
(18) for the prediction at tk+1 :

dq(t)
dt

= −∇qJd(q(t)). (22)

Note that the partial derivative in (19), which builds the gradient
flow in (22), is a function of positions in ∪j∈Ni (t)Nj (t) only.
This makes the algorithm distributed. A distributed sampling
strategy for agent i with the network-performance cost function
Jd in (18) is summarized in Table III. This way, each agent with
the distributed sampling strategy uses spatially and temporally
truncated observations.

V. SIMULATION RESULTS

In this section, we apply our approach to a spatiotempo-
ral Gaussian process with a covariance function in (3). The
Gaussian process was numerically generated through circulant
embedding of the covariance matrix for the simulation [35].
The hyperparameters used in the simulation were chosen to be
θ = [σ2

f σx σy σt ]T = [1 0.2 0.2 5]T . The surveil-
lance region Q is given by Q = [0 1]2 . The SNR γ = 100 is
used throughout the simulation, which is equivalent to a noise
level of σw = 0.1. In our simulation, N = 9 agents start sam-
pling at t1 = 1 and make new observations at every integer
time, i.e., tk = k ∀k ∈ Z>0 . The initial positions of the agents
are randomly selected. The truncation size η = 10 is chosen
by the use of the approach that is introduced in Section III-C
that guarantees the averaged performance level ε(η = 10) < 0.1
under a uniform sampling distribution (see Example 3.8).

In the figures of simulation results, the target positions, the
initial positions of agents, the past sampling positions of agents,
and the current positions of agents are represented by white
stars, yellow crosses, pink dots, and white circles with agent
indices, respectively.

A. Gradient-Based Algorithm Versus Exhaustive Search
Algorithm

To evaluate the performance of the gradient-based algorithm
that is presented in Section IV, we compare it with the ex-
haustive search algorithm over sufficiently many grid points,
which guarantees the near optimum. Because of the exponential
complexity of the grid-based exhaustive search algorithm as the

TABLE III
DISTRIBUTED SAMPLING STRATEGY AT TIME tk

Fig. 5. Prediction error variances at t5 achieved by the usage of (a) gradient-
based algorithm and (b) exhaustive search algorithm. The trajectories of the
agent are shown as solid lines.

number of agents increases, its usage for multiple robots is pro-
hibitive. Hence, we consider a simple case in which only one
mobile agent samples and makes prediction on 21 × 21 target
points over Q. The grid points used in the exhaustive search are
the same as the target points, i.e., 21 × 21 grid points. The initial
positions of the agents for both cases were set to [0.2 0.3]T .
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Fig. 6. Average of prediction error variances over target points (in blue circles) that is achieved by the centralized sampling scheme by the use of all collective
observations for (a) case 1, (b) case 2, and (c) case 3. In case 1, the target points are fixed at time t10 , and the counterparts that are achieved by the benchmark
random sampling strategy are shown as red squares with error bars. In cases 2 and 3, the target points are at tk+1 and change over time. The counterparts that are
achieved by the use of truncated observations are shown as red squares.

The prediction error variances at t5 for the proposed algorithm
and the exhaustive search algorithm are shown in Fig. 5(a) and
(b), respectively. At time t5 , the averaged prediction error vari-
ance over target points is 0.636, which is close to 0.613 that
is achieved by the exhaustive search. Therefore, this simulation
study shows that the performance of the gradient-based algo-
rithm is comparable with that of the exhaustive search algorithm
for the given problem.

B. Centralized Sampling Scheme

Consider a situation, where a central station has access to
all measurements that are collected by agents. At each time,
measurements that are sampled by agents are transmitted to the
central station that uses the centralized navigation strategy and
sends control commands back to individual agents.

Case 1: First, we consider a set of fixed target points, e.g.,
6 × 6 grid points on Q at a fixed time t10 . At each time step,
the cost function Jc in (11), which is the average of prediction
error variances at target points, is minimized because of the
proposed centralized navigation strategy in Section IV-A. As a
benchmark strategy, we consider a random sampling scheme in
which a group of nine agents takes observations at randomly
selected positions within the surveillance region Q.

In Fig. 6(a), the blue circles represent the average of predic-
tion error variances over target points that are achieved by the
centralized scheme, and the red squares indicate the average of
prediction error variances over target points that are achieved by
the benchmark strategy. Clearly, the proposed scheme produces
lower averaged prediction error variances at target points as time
increases, which demonstrates the usefulness of our scheme.

Case 2: Next, we consider the same 6 × 6 grid points on Q
as in case 1. However, at time tk , we are now interested in the
prediction at the next sampling time tk+1 . At each time step,
the cost function Jc is minimized. Fig. 6(b) shows the average
of prediction error variances over target points that are achieved
by the centralized scheme with truncation (red squares) and
without truncation (blue circles). With truncated observations,
i.e., with only observations that are obtained from latest η = 10
time steps, we are able to maintain the same level of the averaged
prediction error variances [around 0.05 in Fig. 6(b)].

Fig. 7(a)–(c) shows the true field, the predicted field, and
the prediction error variance at time t1 , respectively. To see
the improvement, the counterparts of the simulation results at
time t5 are shown in Fig. 7(d)–(f). At time t1 , agents have
little information about the field, and hence, the prediction is
far away from the true field, which produces a large prediction
error variance. As time increases, the prediction becomes close
to the true field and the prediction error variances are reduced
because of the proposed navigation strategy.

Case 3: Now, we consider another case in which 36 target
points (which are plotted in Fig. 8 as white stars) are evenly
distributed on three concentric circles to form a ring-shaped
subregion of interest. As in case 2, we are interested in the
prediction at the next time iteration tk+1 . The average of pre-
diction error variances over these target points at each time
step that is achieved by the centralized scheme with truncation
(red squares) and without truncation (blue circles) are shown
in Fig. 6(c). The prediction error variances at time t1 and t5
are shown in Fig. 8(a) and (b), respectively. It is shown that
agents dynamically covered the ring-shaped region to minimize
the average of prediction error variances over the target points.

C. Distributed Sampling Scheme

Consider a situation in which the sensor network has a lim-
ited communication range R, i.e., Ni(t) := {j ∈ I | ‖qi(t) −
qj (t)‖ < R, j �= i}. At each time step k ∈ Z>0 , agent i collects
measurements from itself and its neighbors Ni(t) and makes
prediction in a distributed fashion. The distributed strategy is
used to navigate itself to move to the next sampling position.
To be comparable with the centralized scheme, the same target
points as in case 2 of Section V-B are considered.

Fig. 9 shows that the cost function, which is an upper bound
of the averaged prediction error variance over target points and
agents, decreases smoothly from time t1 to t2 by the gradi-
ent descent algorithm with a communication range R = 0.4.
Significant decreases occur whenever one of the agent gains a
neighbor. Notice that the discontinuity of minimization of J in
(15) that is caused by gaining or losing neighbors is eliminated
because of the construction of Jd in (18). Hence, the proposed
distributed algorithm is robust to gaining or losing neighbors.
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Fig. 7. Simulation results at t1 and t5 that are obtained by the centralized sampling scheme for case 2. (a) True field at t1 . (b) Predicted field at t1 . (c) Prediction
error variance at t1 . (d) True field at t5 . (e) Predicted field at t5 . (f) Prediction error variance at t5 .

Fig. 8. Simulation results that are obtained by the centralized sampling scheme
for case 3. The trajectories of agents are shown as solid lines. (a) Prediction
error variance at t1 . (b) Prediction error variance at t5 .

Fig. 9. Cost function Jd (q̃) from t1 to t2 with a communication range R =
0.4.

The following study shows the effect of different communi-
cation ranges. Intuitively, the larger the communication range is,
the more information can be obtained by the agent, and hence,
the better prediction can be made. Fig. 10(a) and (b) shows the

Fig. 10. Average of prediction error variances over all target points and agents
that are achieved by the distributed sampling scheme with a communication
range (a) R = 0.3 and (b) R = 0.4. The average of prediction error variances
over all target points, and agents are shown as blue circles. The average of
prediction error variance over local target points and agents are shown as red
squares. The error bars indicate the standard deviation among agents.

average of prediction error variances over all target points and
agents as blue circles with error bars indicating the standard
deviation among agents for the cases R = 0.3 and R = 0.4,
respectively. In both cases, d0 = 0.1 in (17) was used. The av-
erage of prediction error variances is minimized quickly to a
certain level. It can be seen that the level of the achieved aver-
aged prediction error variance with R = 0.4 is lower than the
counterpart with R = 0.3.

Now, assume that each agent only predict the field at target
points within radius R (local target points). The average of
prediction error variances, over only local target points and
agents, are also plotted in Fig. 10 as red squares with the standard
deviation among agents. As can be seen, the prediction error
variances at local target points (red squares) are significantly
lower than those for all target points (blue circles).
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Fig. 11. Simulation results are obtained by the distributed sampling scheme with different communication ranges. The edges of the graph are shown as solid
lines. (a) R = 0.3, k = 1. (b) R = 0.3, k = 2. (c) R = 0.3, k = 5. (d) R = 0.3, k = 20. (e) R = 0.4, k = 1. (f) R = 0.4, k = 2. (g) R = 0.4, k = 5.
(h) R = 0.4, k = 20.

Fig. 11 shows the prediction error variances that are obtained
by agent 1 along with the edges of the communication network
for different communication ranges R and different time steps
k. In Fig. 11, the target positions, the initial positions, and the
current positions are represented by white stars, yellow crosses,
and white circles, respectively. Surprisingly, the agents under the
distributed navigation algorithm produce an emergent, swarm-
like behavior to maintain communication connectivity among
local neighbors. Notice that this collective behavior emerged
naturally and was not generated by the flocking or swarming al-
gorithm as in [8]. This interesting simulation study (see Fig. 11)
shows that agents will not get too close to each other since the
average of prediction error variances at target points can be re-
duced by spreading over and covering the target points that need
to be sampled. However, agents will not move too far away from
each other since the average of prediction error variances can be
reduced by collecting measurements from a larger population
of neighbors. This tradeoff is controlled by the communication
range. With the intertwined dynamics of agents over the prox-
imity graph, as shown in Fig. 11, mobile sensing agents are
coordinated in each time iteration in order to dynamically cover
the target positions for better collective prediction capability.

VI. CONCLUSION

For spatiotemporal Gaussian processes, in this paper, predic-
tion based on truncated observations for mobile sensor networks
has been justified. In particular, a theoretical foundation of Gaus-
sian processes with truncated observations have been presented.
Centralized and distributed navigation strategies have been pro-
posed to minimize the average of prediction error variances at
target points that can be arbitrarily chosen by a user. Simula-
tion results demonstrated that mobile sensing agents under the

distributed navigation strategy produce an emergent, collective
behavior for communication connectivity and are coordinated
to improve the quality of the collective prediction capability. Fu-
ture work will consider the optimal coordination of the mobile
sensor networks subject to energy constraints.

APPENDIX A

PROOF OF THEOREM 3.1

Proof: We can rewrite (4a) as

ẑ∗ =
[
km

kr

]T [
Cm Kmr

KT
mr Cr

]−1 [
ym

yr

]
(23a)

and (4b) as

σ2
ẑ∗ = σ2

f

(
1 −

[
km

kr

]T [
Cm Kmr

KT
mr Cr

]−1 [
km

kr

])
. (23b)

By the use of the identity that is based on matrix-inversion
lemma [

A B
BT C

]−1

=
[

E F
FT G

]

where

E = A−1 + A−1BC − BT A−1B)−1BT A−1

F = −A−1B(C − BT A−1B)−1

G = (C − BT A−1B)−1

(23a) and (23b), respectively, become

ẑ∗ = kT
mC−1

m ym

+ (kr − KT
mrC

−1
m km )T
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× (Cr − KT
mrC

−1
m Kmr )−1

× (yr − KT
mrC

−1
m ym )

and

σ2
ẑ∗ = σ2

f

(
1 − kT

mC−1
m km

)
− σ2

f (kr − KT
mrC

−1
m km )T

× (Cr − KT
mrC

−1
m Kmr )−1

× (kr − KT
mrC

−1
m km ).

Hence, by the use of (5a) and (5b), we obtain (6a) and (6b). �

APPENDIX B

PROOF OF THEOREM 3.3

Proof: The first statement is straightforward from Theorem
3.1.

For the second statement, we can represent yr as yr =
C1/2

r u = UΛ1/2u = Uỹ, where u is a vector of independent
standard normals, and Cr = UΛUT and C1/2

r = UΛ1/2 . By
the usage of the Cauchy–Schwarz inequality and norm inequal-
ities, we have

|ẑ∗ − ẑ′∗| = |kT
r C−1

r yr |
= |kT

r C−1
r Uỹ|

≤ ‖kT
r C−1

r ‖‖Uỹ‖
= ‖kT

r C−1
r ‖‖ỹ‖

≤ ‖kT
r C−1

r ‖
√

r‖ỹ‖∞
≤ ‖kT

r C−1
r ‖

√
rȳ.

Recall that we have u ∼ N (0, I) and ỹ ∼ N (0,Λ), where Λ =
diag(λ1 , . . . , λr ). Then, we can compute the probability p1 =
Pr(‖ỹ‖∞ ≤ ȳ) as follows:

p1 = Pr

(
max
1≤i≤r

|ỹ(i) | ≤ ȳ

)

= Pr

(
max
1≤i≤r

|λ1/2
i ui | ≤ ȳ

)

=
∏

1≤i≤r

Pr
(
λ

1/2
i |ui | ≤ ȳ

)

=
∏

1≤i≤r

Pr

(
|ui | ≤

ȳ

λ
1/2
i

)

=
∏

1≤i≤r

(
1 − 2φ

(
− ȳ

λ
1/2
i

))

where φ is the cumulative standard normal distribution. �

APPENDIX C

PROOF OF THEOREM 3.4

Proof: Let A = C−1
m Kmr and B = KT

mrC
−1
m Kmr for nota-

tional convenience. Then

|ẑ∗ − ẑ′∗| = ‖(kT
r − kT

mA)(Cr − B)−1(yr − AT ym )‖
≤ ‖kT

r − kT
mA‖‖(Cr − B)−1(yr − AT ym )‖.

Since Kr = Cr − 1/γI is positive semidefinite and Cm is pos-
itive definite, we have that Kr − B is positive semidefinite.
Then, we have

(Cr − B)−1 = (Kr + 1/γI − B)−1

� γI.

Combining this result, we get

|ẑ∗ − ẑ′∗| ≤ 2γ‖kr‖(‖yr‖ + ‖AT ym‖)
≤ 2γ(1 + δ2)‖kr‖‖yr‖
≤ 2γ(1 + δ2)

√
rKmax‖yr‖

where K(x(i) ,x∗) ≤ Kmax for i ∈ {m + 1, . . . , n}. Define
ȳ(p2) such that maxn

i=m+1 |y(i) | ≤ ȳ(p2) with probability p2 .
Then, with probability p2 , we have

|ẑ∗ − ẑ′∗| ≤ 2γr(1 + δ2)Kmaxȳ(p2).

Hence, for ε > 0, if

Kmax <
ε

2γr(1 + δ2)ȳ(p2)
(24)

with probability p2 , we have

|ẑ∗ − ẑ′∗| < ε. (25)

Let l2 = min‖x(i) − x∗‖2 for any i ∈ {m + 1, . . . , n}. Then,
(24) becomes, with probability p2

exp
(
− l2

2σ2
�

)
≤ Kmax <

ε

2γr(1 + δ2)ȳ(p2)

l2 > −2σ2
� log

(
ε

2γr(1 + δ2)ȳ(p2)

)
.

For ε < 2γr(1 + δ2)ȳ(p2), we have

l2 > 2σ2
� log

(
2γ

1
ε
r(1 + δ2)ȳ(p2)

)

and this completes the proof. �
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