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Robust Gain-Scheduling Control of

Port-Fuel-Injection Processes
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Abstract—In this paper, an event-based sampled discrete-time
linear system representing a port-fuel-injection process based on
wall-wetting dynamics is obtained and formulated as a linear pa-
rameter varying (LPV) system. The system parameters used in the
engine fuel system model are engine speed, temperature, and load.
These system parameters can be measured in real time through
physical or virtual sensors. A gain-scheduling controller for the ob-
tained LPV system is then designed based on the numerically effi-
cient convex optimization or linear matrix inequality (LMI) tech-
nique. A hardware-in-the-loop (HIL) simulation is performed to
validate the gain-scheduling controller on a mixed mean-value and
crank-based engine model. The HIL simulation results show the ef-
fectiveness of the proposed gain-scheduling controller.

Index Terms—Engine and powertrain control, gain-scheduling
control, hardware-in-the-loop (HIL) simulation, LPV control, ro-
bust control.

I. INTRODUCTION

I NCREASING concerns about global climate change and
ever-increasing demands on fossil fuel capacity call for

reduced emissions and improved fuel economy. Vehicles
equipped with a port-fuel-injection fuel system have been
widely used today; and vehicles equipped with a direct-injec-
tion (DI) fuel system have been introduced to markets globally.
In order to improve DI engine full load performance at high
speed, Toyota introduced an engine with a stoichiometric direct
injection system with two fuel injectors for each cylinder
(see [1]). One is a DI injector generating a dual-fan-shaped
spray with wide dispersion, while the other is an intake port
injector. The dual-fuel system introduces one additional degree
of freedom for engine optimization to reduce emissions with
improved fuel economy. The use of gasoline port-fuel-injec-
tion and ethanol DI dual-fuel system to substantially increase
gasoline engine efficiency is described by [2]. The main idea
is to use a highly boosted small turbocharged engine to match
the performance of a much larger engine. Direct injection
of ethanol is used to suppress engine knock at high-engine
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load due to its substantial air charge cooling resulting from
its high heat of vaporization. This shows that with the intro-
duction of DI fuel systems for the internal combustion engine,
port-fuel-injection fuel systems will be part of the engine fuel
system for improved engine performance, which is the main
motivation for revisiting the air-to-fuel ratio control problem
for a port-fuel-injection fuel system.

There have been several fuel control strategies developed for
internal combustion engines to improve the efficiency and ex-
haust emissions. A key development in the evolution was the
introduction of a closed-loop fuel injection control algorithm
[3], followed by the linear–quadratic control method [4], and an
optimal control and Kalman filtering design [5]. Specific appli-
cations of A/F ratio control based on observer measurements in
the intake manifold were developed by [6]. Another approach
was based on measurements of exhaust gases A/F ratio mea-
sured by the oxygen sensor and the mass air flow rate close to
the throttle position [7]. A nonlinear sliding mode control of A/F
ratio based upon the oxygen sensor feedback was also developed
in [8]. Continuing research efforts of A/F ratio control include
adaptive approaches [9], [10], observer-based controllers [11],

controllers [12], model predictive controllers [13], sliding
mode controllers [14], and linear parameter-varying controllers
[15]–[17]. Conventional A/F ratio control for automobiles uses
both closed-loop feedback and feedforward control to have good
steady state and fast transient responses.

For a spark-ignited engine equipped with a port-fuel-injection
system, the wall-wetting dynamics is commonly used to model
the fuel injection process; and the wall-wetting effects are com-
pensated on the basis of simple time-invariant linear models that
are tuned and calibrated through engine dynamometer and ve-
hicle tests. These models are quite effective for an engine op-
erated at steady state or slow transition conditions but they are
difficult to be used at fast transient and other special operational
conditions, for instance, during engine cold start. One of the
approaches to model the wall-wetting dynamics during engine
cold start is to describe it using a family of linear models to ap-
proximate the system dynamics at a given engine coolant tem-
perature, speed and load conditions, that is, to translate the fuel
system model into a linear parameter varying (LPV) system.

As stated earlier, the use of LPV modeling to control the
A/F ratio of a port-fuel-injection system has been reported by
[15]–[17]. In [17], a continuous-time, LPV model is developed
considering only engine speed as a time-varying parameter. Due
to the simplicity of the model used, the issue of engine cold
start is not addressed. Furthermore, the control synthesis method
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1434 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 19, NO. 6, NOVEMBER 2011

used in [17] relies on gridding the parameter space at a finite
number of grid points. In [16], a large variable time delay is
present in the air–fuel ratio control loop for a lean burn spark-ig-
nition engine. LPV control methods are used to compensate for
the variable time delay. In [15], a discrete-time, LPV model
is developed with manifold absolute pressure, exhaust value
closing, and inlet value opening as the time-varying parame-
ters. However, only manifold absolute pressure is used as a
scheduling parameter in the gain-scheduling control that is syn-
thesized. Also, [15] does not address the issue of engine cold
start. Additionally, all LPV control synthesis methods used by
[15] are based in continuous time, relying on Tustin’s (bilinear)
transformation to convert the discrete-time system to a contin-
uous-time system, thus fixing the engine speed and sampling
rate of the discrete-time system. In contrast to all of these ef-
forts, this paper designs an event-based gain-scheduling con-
troller for an event-based discrete-time LPV system with wall-
wetting parameters and engine speed as time-varying parame-
ters. To cope with practical situations, the discrete-time LPV
control synthesis method given by [18] is used to develop the
event-based gain-scheduling controller. An affine LPV model
including the feedforward control dynamics is obtained. Gain-
Scheduling controllers have been synthesized to guarantee the
robust stability and performance of the affine LPV model.

The control structures used in this study are proportional-in-
tegral (PI) and proportional-integral-derivative (PID). PI con-
trollers are widely used in industry, since they are well under-
stood by field control engineers. The PI gains are often cali-
brated in field tests for the best performance as functions of
system operational conditions. However, the system stability
and performance are not guaranteed for all time-varying pa-
rameters. Therefore, LPV techniques proposed in this paper are
applied to design gain-scheduling PI controllers for guaranteed
stability and performance for all time-varying parameters. Fur-
thermore, the addition of derivative control to a PI controller
adds an extra layer of complexity. The design of a PID con-
troller at a single operating point can be a difficult iterative pro-
cedure, which would make calibrating PID gains as functions of
system operational conditions very time consuming. However,
designing a gain-scheduling PID controller using LPV tech-
niques is as simple as adding a derivative channel to the control
input. The ability to design either a gain-scheduling PI or PID
controller with guaranteed stability and performance in one shot
without requiring hours of calibration will be well received by
industrial control engineers.

The process of designing an LPV controller for any automo-
tive application is shown in Fig. 1. Due to the complexity of
internal combustion engines, designing controllers for specific
engine systems using an entire engine model is extremely diffi-
cult if even possible. Therefore, to design a controller for a spe-
cific engine subsystem, first a physics-based simplified model is
developed to represent the engine subsystem. After the varying
parameters are identified, the physics-based model can be trans-
formed into an LPV model. LPV controller design can then be
carried out on the LPV model to develop an LPV controller.
Once the LPV controller is obtained it must be tested on the orig-
inal engine to ensure that it meets all stability and performance
requirements. A cost effective way of validating developed LPV

Fig. 1. Flowchart of the design and validation process of an LPV controller.

controllers is to implement them in a rapid prototyping real-time
control systems and validate them through HIL simulations.

In this paper, we first develop a physics-based model for the
port-fuel-injection process based on the wall-wetting dynamics
and formulate it as an LPV system. The system parameters used
in the engine fuel system model are engine speed, tempera-
ture, and load. These system parameters can be obtained in real
time through physical or virtual sensors. A gain-scheduling con-
troller is then obtained for the derived LPV system based on
the numerically efficient convex optimization (or LMI) tech-
niques. To validate the gain-scheduling PI and PID controllers,
HIL simulations were performed using a mixed mean-value and
crank-based engine model [19].

Standard notation is used throughout the paper. Let and
denote the set of real and non-negative integer numbers,

respectively. The positive definiteness of a matrix is denoted
by . The maximum (respectively, minimum) of is de-
noted by (respectively, ). Other notation will be explained in
due course.

II. LPV GAIN-SCHEDULING CONTROLLER DESIGN

The design of the LPV gain-scheduling controller is ex-
plained in full detail by [20].

A. Plant Dynamics

1) Dynamics of Port-Fuel-Injection Process: The discrete-
time linear system is obtained by event-based sampling of the
port-fuel-injection process, hence the sampling time of this dis-
crete-time system is the period of an engine cycle (see gen-
eral engine modeling techniques in [21]). The wall-wetting dy-
namics can be described as follows:

(1)

where , and , and denote the amounts of
fuel, injected, on the wall and in the cylinder, respectively. The
coefficients and are the ratios of the fuel
delivered from the wall to the cylinder, and of the fuel entering
the cylinder from injection, respectively.

The wall wetting parameters ( and ) of a port-fuel-injection
process are typically identified at different engine speeds, loads,
and temperatures during a so-called engine mapping process
with an engine dynamometer, and then 3-D surfaces are created
for the wall wetting parameters ( and ) as functions of engine
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Fig. 2. Block diagram of the port-fuel-injection process and sensor dynamics.

speed, load, and temperature. These three LPV parameters, en-
gine speed, load, and temperature, represent the leading varia-
tions of the wall wetting dynamics. The wall wetting dynamics
can also be obtained through adaptive estimation [22]. Using the
either of these techniques, the wall wetting parameters and
can be estimated online, which allows us to apply gain-sched-
uling control to the plant. Using the discrete-time dynamics in
(1), we obtain the transfer function from to

(2)

where is the forward shift operator that satisfies

The dotted box in the block diagram in Fig. 2 illustrates the
fuel-injection process. The output of is the input to the
gain block of , which is the nominal value of the in-
verse of the air amount . The signal represents the devia-
tion [14], which will be treated as a
disturbance in this paper. Another constant gain factor
in Fig. 2 is the value for the air-to-fuel ratio at stoichiometric.
After the combustion delay block the equivalence ratio (in-
verse of the normalized air-to-fuel ratio) is generated. The dia-
gram of the transfer function from the amount of fuel injected

and the disturbance to the equivalence ratio is shown
in the dotted box in Fig. 2.

2) Oxygen Sensor: To measure , we use an oxygen sensor
whose dynamics are modeled as the first-order dynamics; and
the transport delay of the exhaust gas mixture is modeled as
a function of engine speed where denotes
the speed of the engine in revolutions per minute (r/min). The
combined transfer function in the continuous time domain is

(3)

where is the equivalence ratio measured by the sensor and
is the time constant of the oxygen sensor. Since the delay

is small, (3) can be approximated by
the second-order system

Fig. 3. Block diagram of the combined dynamics of the exhaust gas and sensor
delays.

that has the state-space representation

(4)

The event-based controller updates the control every combus-
tion event such that the sample period is given by .
Using as the sampling period, the corresponding discrete
system of (4) is

where

Since both and are functions of engine speed , naturally
and are as well. A fourth-order Taylor series approxima-

tion is used to capture the parameter variation of . To ensure
that the coefficients of the Taylor series approximation of
are numerically stable, the engine speed must be normalized.
Furthermore, due to the way that appears in , it is nec-
essary to isolate instead of . For this reason, we nor-
malize to in the following way:

(5)

The polynomial linear fractional transformations and
, given in [20], are used to isolate the varying parameter

[23]. The diagram of the transfer function from the equivalence
ratio to the measured equivalence ratio is shown in Fig. 3.

B. Control Synthesis

The objective of the control system is to regulate the
equivalence ratio to a reference input using feedback
control against the disturbance signal . To achieve the ob-
jective, a unified control design scheme is proposed in which
a gain-scheduling feedback controller is designed for
the feedforward control compensated generalized plant (see
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Fig. 4. Proposed control strategy for the fuel injection process. The LPV con-
trol strategy is applied to the systems inside the dotted box. Here � � � and
� � � � .

[20]), as depicted in Fig. 4. The feedforward controller
is designed using the inverse of

The systems inside the dotted box in Fig. 4 are formulated as a
discrete-time LPV system using linear fractional transformation
(LFT). Then the gain-scheduling controller is designed
based on the technique given by [18].

In the generalized plant , the time-varying parameters
and are considered to be equivalent to a constant nominal
value plus a time-varying fluctuation. For instance, the param-
eter variation of with would
be represented by

so that the parameter range of is centered around zero. Hence,
is replaced by . The same is done for

as well.
With the parameter variation represented in this way, the

system is written as a discrete-time LPV system with LFT
parameter dependency,

(6)

where is the state at time is the
disturbance, is the error output, are
the pseudo-input and output connected by is
the control input, and is the measurement for control.
The time-varying parameter in (6) follows the structure:

(7)

where and .
The gain of the LPV system in (6) with a gain-scheduling

feedback controller is defined as

(8)

Fig. 5. First-order Taylor series LPV system augmented with the low-pass filter
����, integrator ����, and differentiator ���� (only for PID controller).

Problem: The goal is to design a static gain-scheduling con-
trol that minimizes the gain of the closed-
loop LPV system in (8).

By inspection of the LPV system in (6), was found to
be a nonzero block. Hence, the system matrices are not affine
functions of parameters. To utilize the control synthesis tech-
nique given by [18], the first-order Taylor series approximation
of the system matrices is used to obtain affine functions in .
Notice that (6) is an upper LFT, i.e.,

(9)

Using the Taylor series expansion at , the system can be
approximated as

where is the partial derivative of the LFT system
in (9) with respect to the th parameter, which can be

calculated as shown by [24].
The control synthesis technique given by [18] also requires

that the output matrix be independent of the time-varying
parameters and the output must not be corrupted by the dis-
turbance input ( in (10)). To accomplish this, the
error output is filtered with a low-pass filter (see Fig. 5)

Integral action was introduced to eliminate steady-state error for
the step input

Derivative action is introduced, when designing a PID con-
troller, to enhance the response of the closed-loop system when
large changes in are present [25]

is chosen to set the location of the pole of the derivative filter.
Notice that and are not functions of the sampling pe-
riod . This is due to the requirement that, as previously stated,
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the output matrix be independent of the time-varying param-
eters. For this reason, is really just a numerical summation
and is a filtered numerical differencer.

The first-order Taylor series LPV system is augmented with
, and (if designing a PID controller) as shown in

Fig. 5 to recover the discrete-time polytopic linear time-varying
system

(10)

where, for all is the vector of time-varying pa-
rameter weights that belong to the unit simplex

A way to compute the weight vector for a given
, and is provided by [26]. For all , the rate

of variation of the weights

is limited by the calculated bound such that

(11)

where .
The system matrices

belong to the polytope

A finite set of LMIs in [18] can be used to design the
gain-scheduling controller. Due to Theorem 3 of [18], if
there exists matrices

, and symmetric matrices
such that the LMI conditions in [18] are satisfied,

the gain-scheduling static feedback control is then obtained as

(12)

where

and

This control is proved to stabilize affine parameter-dependent
systems such as (10) with a guaranteed performance
bounded by for all and that satisfies (11).

III. DESIGN OF LINEAR TIME-INVARIANT (LTI) FEEDBACK

CONTROLLERS

To demonstrate the necessity of a gain-scheduled controller
over a LTI controller, we designed a fixed gain controller
based on the nominal parameters. Using the nominal parame-
ters, the closed-loop state-space representation is

(13)

where

Denoting the transfer function from to by , the in-
equality holds if, and only if, there exists a sym-
metric matrix such that

(14)

is feasible [27]. The optimal feedback controller for the
closed-loop system (13) is formulated as the optimization of
the bilinear matrix inequality (BMI)

(15)

where and for a PI controller or
for a PID controller. The BMI (15) was solved using

the PENBMI software [28] as a MATLAB function in conjunc-
tion with the YALMIP [29] programming interface to find the
fixed , PID controller .

IV. HIL SIMULATION SETUP

The engine model used for the HIL simulation is a control
oriented four cylinder dual fuel mean-value engine model devel-
oped at Michigan State University [19], which satisfies the re-
quirements of validating an engine controller. The term “mean-
value” indicates that the developed engine model neglects the re-
ciprocating behavior of the engine, assuming all processes and
effects are spread out over the engine cycle. For the HIL sim-
ulation, this model describes the input-output behavior of the
physical engine systems with reasonable simulation accuracy
using relatively low computational throughput. Reference [30]
provides a good overview of engine modeling, and most of dy-
namic equations used in our modeling work are from this ref-
erence book. This engine model also includes all engine tran-
sient dynamics. Fig. 6 shows the overall mean-valve engine
model architecture, along with main subsystem models, such
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Fig. 6. Mean value engine model.

as air-to-fuel ratio, manifold air pressure, brake mean effective
pressure (BMEP), engine torque, exhaust temperature, etc.

A. Mean Value Engine Models

The subsystems that are described mathematically by their
averaged dynamic behaviors are given in the following.

1) Valve Model: The valve model is used to compute the
mass flow rate of air across the valve. The model used for the in-
take throttle and the EGR valve follow the governing equations

(16)

(17)

where is the valve discharge coefficient; is the valve
opening angle; is the gas constant; is the valve open area;

and are the pressure and temperature upstream from
the valve; and is the mass flow rate across the valve. The
governing equations (16)–(17) follow the assumption that the
spacial effects of the connecting pipes before and after the
valve are neglected and that the thermodynamic characteristics
of the connecting pipes are isentropic expansion.

2) Manifold Filling Dynamic Model: The manifold pressure
of the intake and the exhaust is computed as a function of time
by the governing equation

(18)

where is the manifold pressure; is the manifold tempera-
ture; is the manifold volume; and are the inlet and
outlet air mass flow rates; and is the universal gas constant.
The assumptions made by governing equation (18) are that the
receiving behavior is an adiabatic process; the thermodynamic
states are uniform over the manifold volume; and the manifold
temperature is averaged over one engine cycle.

3) Engine Respiration Model: The mass flow rate of the air
across of the engine cylinders is computed by the engine
respiration model

(19)

where is a two degree of freedom lookup table; and are
the mean pressure and temperature at the intake manifold;
is the mean pressure at the exhaust manifold; and are the
engine displacement and the cylinder clearance volume; and
is the heat capacity ratio of the gas charged in the cylinder.

4) Crankshaft Dynamic Model: The crankshaft dynamic
model, based on Newton’s theory assuming a rigid crankshaft,
is derived as

(20)

where is the rotational inertia of the engine crankshaft; and
and are the engine brake and load torques. The desired

engine speed is maintained by an engine dynamometer model
that generates the engine load torque using a feedback PID
controller.

B. Event-Based Engine Models

The mathematical models used to simulate the cycle-to-cycle
varying variables of engine subsystems are given in the fol-
lowing. Each variable in this sections is updated based on the
engine cycle and is independent of time .

1) Event-Based Wall-Wetting Dynamics: When port-fuel-in-
jection is used to deliver fuel to the engine cylinders, some of
the fuel injected after each injector pulse enters the cylinders.
However, the remaining fuel sticks to the walls of the intake port
and on the back of the intake valve. The total fuel entering the
engine cylinders then consists of fuel injected from the current
injection pulse and fuel vapor from the fuel mass stored on the
walls from previous injection pulses. Knowledge of this process
is necessary to control the metering of fuel for precise air-to-fuel
ratio control. The event based wall-wetting dynamics used in the
engine for HIL simulation are the same as those in (1).
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Fig. 7. HIL engine model and controller setup.

2) Event-Based Engine Air-to-Fuel Ratio: The gas exchange
behavior of the engine introduces dynamics into the air-fuel
ratio calculation. Since the engine uses exhaust gas recircu-
lation, a substantial amount of the burned gas remains in the
cylinder. The gas fraction carries the air-to-fuel ratio of the pre-
vious engine cycle into the current cycle. Due to this behavior,
the air-fuel ratio is modeled cycle-to-cycle as

(21)

where is the normalized air-to-fuel ratio defined as

(22)

is the normalized air-to-fuel ratio of the gas mixture inside
the engine cylinder after the intake valve is closed. is the
mass of the fresh gas mixture charge in the cylinder, which is the
summation of the fresh air mass and the fresh fuel mass ,
and is the burned gas remaining in the engine cylinder
after the exhaust valve closes, which includes burned gas due to
both internal and external EGR (exhaust gas recirculation). Note
that these dynamics are quite different from the LPV design
model described in Fig. 2.

3) Event-Based Engine Brake Torque: For every combustion
event, the engine brake torque calculation is triggered using the
following equation:

(23)

where is the number of engine cylinders; is the low heating
value of the fuel; is the engine efficiency, which is a function
of engine speed, normalized air-to-fuel ratio, spark timing ,
and the exhaust-gas-recirculation rate .

The mean value engine model was implemented into an
Opal-RT HIL system using MATLAB/Simulink. The engine
model was updated at a sample period of 1 ms. Similarly, the
LPV controller, along with feedforward controller, was imple-
mented as an event-based discrete controller in Simulink into a
Mototron engine control module (ECU) sampled every 5 ms as
a function call, see HIL simulation scheme shown in Fig. 7. The
Opal-RT HIL simulator communicates with the Mototron ECU
controller through the high-speed control-area-network (CAN),
where signals were sent and received with minimal delay.

The Opal-RT simulation step size of 1 ms was chosen in order
to emulate a real-world continuous time engine. Similarly, the
Mototron sample rate of 5 ms for the controller updating is used

Fig. 8. HIL timing scheme.

Fig. 9. Case 1: Engine cold start using simple model.

in many production engine control systems. The CAN commu-
nication between Opal-RT and Mototron has a time delay be-
tween the time when signals are sent from Mototron and the time
when they are received by Opal-RT, and vice versa. This delay
was less than 1 ms for our setup, since only a few variables were
communicated between the HIL simulator and Mototron con-
troller, see the timing scheme in Fig. 8. The event based func-
tion call was implemented as follows. At each sample time, the
controller checks if the event based sample condition is met;
and if so, the function call will be made to execute the event
based control strategy (see Fig. 8). Since the sample period of
the event-based LPV controller is a function of engine speed
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Fig. 10. Case 1: Engine cold start using HIL.

and it can executed within a 5 ms sample period, the LPV con-
troller can not be updated exactly at each fuel injection event.
This leads to some sample time error between ideal event-based
sampling and actual function call implementation.

V. HIL SIMULATION RESULTS

In Figs. 9–12, the responses for the gain-scheduling PI and
PID controllers are given by the solid gray and black lines,
respectively. The gray dashed line shows the response of the
fixed gain PID controller. In each of the HIL simulations,
white Gaussian noise was added to each of the measured sig-
nals to represent measurement noise. The standard deviation of
the noise added to each signal was set such that the value of
the noise would not be larger than the following percentages
of the measured signals: air flow %, equivalence ratio

%, coolant temperature %, intake pressure %, and
engine speed %. Even though the cycle-to-cycle combus-
tion variations typically present in internal combustion engines
are correlated to engine speed, load and temperatures, the sensor
measurement noise, due to cycle-to-cycle combustion variations
and sensor noise, was simplified as a Gaussian white noise due
to its simplicity and broad bandwidth. Also, in each of the HIL
simulations, the fuel injected is saturated, as a function of the

Fig. 11. Case 2: Engine load change using HIL.

mass air flow, to % of the fueling that keeps equivalence
ratio at one.

A. Case 1: Engine Cold Start

We simulate an engine cold start process from freezing
temperatures (0 C) to its normal operation temperature of
approximately 100 C within about 2 min at an engine speed
of 1500 r/min. The purpose of this simulation is to emulate the
cold start of an internal combustion engine when the engine
is operated at high idle speed during the warm-up. Note that
during the engine warm-up process the fuel vapor is much
less at low temperature than that at high temperature. There-
fore, this leads to quite different wall-wetting dynamics. The
wall-wetting dynamics coefficients and defined in (2) were
obtained from actual engine test data and they are functions
of engine coolant temperature, speed, and load. Since speed
and load were fixed in this simulation, both and were
functions of engine temperature and their values are shown in
Fig. 10(C). The responses of the gain scheduling PI and PID
controllers during this simulation, given in Fig. 10, are nearly
identical. However, at between 100 and 110 s, the fixed gain

PID controller becomes saturated causing the measured
equivalence ratio to oscillate between 0.8 and 1.2, while both
LPV controllers continue to regulate the equivalence ratio to
the desired value of 1. Also, in Fig. 10(B), the mass of the



WHITE et al.: HARDWARE-IN-THE-LOOP SIMULATION OF ROBUST GAIN-SCHEDULING CONTROL OF PORT-FUEL-INJECTION PROCESSES 1441

fuel injected when using the fixed gain PID controller has
noticeable perturbations due to the noise added to the measured
equivalence ratio. However, the gain scheduling PI and PID
controllers have no noticeable perturbations that demonstrate
that not only do they remain stable over the entire operating
range of the engine, but also they are robust to the added
measurement noise.

For comparison purposes, a simulation was carried out using
the control model described in Section II-A for the engine cold
start problem with the response displayed in Fig. 9. In this sim-
ulation, no measurement noise was added to the measured sig-
nals. Also, a saturation level was not imposed on the feedback
control input.

B. Case 2: Load Change

In this case we simulate an engine dynamometer experiment
for an engine operated at a temperature of 80 C with an engine
speed of 1500 r/min. After the engine is stably operated at
this condition with a 32% throttle, the load is increased by
a step throttle position from 32% to 46%. Note that in the
dynamometer test, the engine speed was maintained by dy-
namometer through torque regulation. This is similar to the
driving condition that a step throttle is applied to maintain the
vehicle speed when the vehicle is driven up a hill. Note that
the step increment of throttle position produces a slight change
in the wall-wetting parameter as shown in Fig. 11(C). The
responses of each controller is given in Fig. 11(A). Notice that
the throttle step occurring at the 30th second results in a drop
in the equivalence ratio due to the step air mass flow. In the
detail of Fig. 11(A), we see that with the gain-scheduling PID
controller the equivalence ratio only drops to approximately
0.85, while the gain-scheduling PI and fixed gain controller
both drop to nearly 0.8. Also, notice that the equivalence ratio
with fixed gain PID controller overshot to over 1.1 with
over fueling as seen in the detail of Fig. 11(B).

C. Case 3: Engine Speed Change

In this simulation, an engine was operated on a dynamometer
with its coolant temperature at 80 C. To demonstrate the capa-
bility for the gain scheduling controller to handle engine speed
variations, a smoothed step command from 1500 to 2500 r/min
was applied to the engine dynamometer to manipulate the en-
gine speed as shown in Fig. 12(D). The resulting engine wall-
wetting dynamics parameters, shown in Fig. 12(C), were used
in the simulation. Notice in Fig. 12(A) that the gain-scheduling
PID controller regulates the equivalence ratio of the engine to
the target value of 1 within 5% error, while the measured equiv-
alence ratio of the engine with the gain-scheduling PI controller
and the fixed gain PID controller go above 1.05. Also, the
equivalence ratio with the fixed gain PID controller drops to
below 0.95, while both gain-scheduling controllers only lower
the equivalence ratio to about 0.96. The equivalence ratio with
the fixed gain PID controller also has many oscillations and
uses more control effort as shown in the detail of Fig. 12(B),
which hurts engine transient fuel economy.

D. Case 4: Combined Load and Engine Speed Change

In this simulation, an engine was operated on a dynamometer
with its coolant temperature at 80 C. To demonstrate the capa-

Fig. 12. Case 3: Engine speed change using HIL.

bility for the gain scheduling controller to handle load changes
combined with engine speed variations, the load is increased
by a step throttle position from 32% to 46% and then combined
with an engine speed variation generated by a smoothed step
command from 1500 to 2000 r/min as shown in Fig. 13(D). The
resulting engine wall-wetting dynamics parameters are shown
in Fig. 13(C). Notice in Fig. 13(A) both of the gain-scheduling
controllers drop the measured equivalence ratio to approxi-
mately 0.85, while the fixed gain PID controller drops the
measured equivalence ratio below 0.85. Also, the fixed gain

PID controller overshoots to nearly 1.15 with over fueling
as seen in the detail of Fig. 11(B).

VI. CONCLUSION

In this paper, an event-based sampled discrete-time linear
system representing a port-fuel-injection process based on wall-
wetting dynamics was obtained. The system was then formu-
lated as an LPV system with engine speed, temperature, and
load as the system parameters in the engine fuel system model.
A gain-scheduling controller for the obtained LPV system inte-
grated with the feedforward control dynamics was then designed
based on the numerically efficient convex optimization (or LMI)
technique. The hardware-in-the-loop simulation results demon-
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Fig. 13. Case 4: Combined load and engine speed change using HIL.

strate the improvement of the closed-loop system performance
over the fixed gain PID controller and the feasibility of im-
plementing of the proposed LPV scheme.
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