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Prior Distributions of Material
Parameters for Bayesian
Calibration of Growth and
Remodeling Computational
Model of Abdominal Aortic Wall
For the accurate prediction of the vascular disease progression, there is a crucial need
for developing a systematic tool aimed toward patient-specific modeling. Considering the
interpatient variations, a prior distribution of model parameters has a strong influence
on computational results for arterial mechanics. One crucial step toward patient-specific
computational modeling is to identify parameters of prior distributions that reflect exist-
ing knowledge. In this paper, we present a new systematic method to estimate the prior
distribution for the parameters of a constrained mixture model using previous biaxial
tests of healthy abdominal aortas (AAs). We investigate the correlation between the
estimated parameters for each constituent and the patient’s age and gender; however,
the results indicate that the parameters are correlated with age only. The parameters
are classified into two groups: Group-I in which the parameters ce; ck1 ; ck2 ; cm2 ;
Gc

h; and /e are correlated with age, and Group-II in which the parameters
cm1 ; Gm

h ; Ge
1; Ge

2; and a are not correlated with age. For the parameters in Group-I, we
used regression associated with age via linear or inverse relations, in which their prior
distributions provide conditional distributions with confidence intervals. For Group-II,
the parameter estimated values were subjected to multiple transformations and chosen if
the transformed data had a better fit to the normal distribution than the original. This
information improves the prior distribution of a subject-specific model by specifying
parameters that are correlated with age and their transformed distributions. Therefore,
this study is a necessary first step in our group’s approach toward a Bayesian calibration
of an aortic model. The results from this study will be used as the prior information nec-
essary for the initialization of Bayesian calibration of a computational model for future
applications. [DOI: 10.1115/1.4031116]
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1 Introduction

Computational models of vascular growth and remodeling
(G&R) have emerged in predictive medicine with an increasing
range of applications in arterial adaptation from physiological
conditions, aging, and vascular diseases. As our understanding of
the mechanobiological physiology and vascular diseases accumu-
lates [1,2], the G&R computational models are able to more accu-
rately account for mechanisms involved in vascular disease
progression. While the computational models have advanced in
capturing the main bio-chemo-mechanical processes [3–5], it is
now a critical question as to how we can determine multiple
parameters for a given patient [6], in that it does not take into
account various uncertainties during the progression of the disease
and variability among patients in clinics.

Rupture of abdominal aortic aneurysms (AAAs) results in high
mortality rates of 80–90% [7–10]. Computational models of
AAAs are indispensable research tools for describing vascular
material behaviors for providing a prediction capability. Finite
element models (FEMs) take into account not only the subject-
specific geometry but also the material properties of the aorta
[11,12], and utilize stress and strength as the key parameters for

estimating the rupture risk and severity of the aneurysm [13,14].
Recently, several groups have been actively researching the accu-
rate estimation of AAA’s wall stress using computational models
such as FEM classical models [15–18] and FEM–G&R models
[19–24].

Several strain energy models for the aorta have been introduced
so far. Some of these models use a phenomenological macro-
scopic approach and consider the aorta as a uniform material
[25,26]. Particularly, structurally defined strain energy functions
introduced by Holzapfel et al. [27,28] are popular in arterial
mechanics because they describe the mechanical behavior well
for various arteries and can account for fibers distributed in multi-
ple directions in the arterial wall. These strain energy functions
and their variations include two parts: an isotropic behavior repre-
sented by elastin and anisotropic behavior presented by multiple
collagen fiber families used for basilar, carotid arteries, and
human aorta [29–31]. In the multiple-fiber models, increasing the
number of parameters provides more flexibility and generally pro-
duces better fitting, but more than six fiber families can cause a
bias error and an overfitting problem [32]. For human healthy and
aneurysmal AAs, Ferruzzi et al. [33] found that a four-fiber family
model can capture the biaxial mechanical behavior. However,
those studies did not consider the prestretch and multiple constitu-
ents that can be modeled independently. Instead, constrained mix-
ture models have been developed, in which the arterial wall is
considered to be a mixture of three constituents, namely elastin,
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collagen fiber families, and smooth muscle cells, independently
with different stress-free configurations. For more details about
the constrained mixture models, refer to Refs. [19,34,35].

The G&R computational models of the aorta have been further
implemented in the patient-specific modeling [11,36–38], particu-
larly in AAA modeling. Initially, the studies focused on the
growth mechanism by which the aortic wall alters collagen turn-
over, homeostasis, and remodeling. It is, however, a critical step
for determining the subject-specific model parameters considering
the wide range of material parameters such as material stiffness,
prestretch, anatomical geometry, wall composition, and ultimately
providing an accurate prediction for a specific clinical application.
Wilson et al. [6] used a constrained mixture model with four fiber
families and reinforced the importance of model parameters on
the G&R results. They estimated parameters including pre-
stretches using a nonlinear regression with a weighted penalty
method for four nonaneurysmal aortas; ages ranging from 47
to 69. He used data from an experimental biaxial tension test
performed by Vande Geest et al. [39]. The computational
model initiated AAAs by inducing elastin degradation. Their
results showed that the parameters of the nonaneurysmal aortas
from different subjects have a strong influence on the mechani-
cal behavior, the aneurysm expansion rate and the geometric
parameters. Although both Wilson et al. [6] and Roccabianca
et al. [40] captured the mechanical behaviors and have similar
values for parameters, there are inconsistencies among multiple
groups, even though the same data from Vande Geest et al.
[39] were used. Hence, the motivation is to examine how the
inconsistencies were arisen from and what can be done to pro-
vide a better prior distribution (distribution for model parame-
ters) to reflect the mechanical behavior. We propose a
systematic method to determine relevant prior distributions and
take into account both population-based parameters and
subject-specific parameters.

In this study, a systematic method is developed to construct
prior conditional distributions of material parameters of the AA at
the given age and gender. First, the G&R model is briefly
described and the constrained mixture approach for aortic
mechanical behavior is introduced. Second, the parameters of
multiple constituents are estimated by using the biaxial test data
provided in the literature [41]. Next, using a regression study, for
each parameter we decide if it is correlated to age and/or gender.
For parameters with correlations to age and/or gender, conditional
normal distributions are constructed for given functions of age
and gender. The rest of the parameters which are not correlated to
either age or gender are modeled by normal distribution fitted to
either the original values or transformed values, depending on the
test’s P-values. Results of the prior distributions for three ages
of 45, 60, and 75 years are illustrated and compared with other
simple approaches.

Finally, we capitalize on the importance of the prior distribu-
tions in the Bayesian approach as the first and necessary step for
our future goal of patient specific modeling for clinical
applications.

2 Methods

2.1 Constitutive Model. Previously, a constraint mixture
model was introduced and utilized by many groups, including our
own, for modeling the nonlinear mechanical behavior of the
human aortic wall [36]. In this model, we assume that the aortic
wall consists of three different constituents, i, including elastin
(i ¼ e); four collagen fiber families (i ¼ 1;…; k;…; 4); and
smooth muscle cells (i ¼ m). Elastin is an isotropic material that
dominates the aortic wall, while collagen fibers and smooth mus-
cle cells are aligned in the aortic wall. Specifically, smooth muscle
cells are aligned circumferentially and four collagen fiber families
are aligned in the axial ði ¼ 1Þ; circumferential (i ¼ 2Þ, and two
diagonal ði ¼ 3; 4Þ directions.

We assume the prestressed in vivo aorta as the reference config-
uration, jR, while a traction-free, cut specimen is considered as the
intermediate configuration, jI (see Fig. 1). FR and FI are the 2D de-
formation gradient tensors mapping from jR to jI and from jI to
j (under biaxial tension), respectively. We have FR ¼
diagfFR

h ; FR
z g and FI ¼ diagfFI

h; FI
zg. FI

h and FI
z are the stretches

in the circumferential and axial directions, respectively, which
have been measured during experiments. Additionally, the 2D
deformation gradient from the prestressed in vivo (reference) con-
figuration, jR, to the current (under tension) configuration, j, is
given by F ¼ FIFR ¼ diagfkh; kzg and the right Cauchy–Green
tensor is C ¼ FTF.

We assume a different stress-free configuration for each constit-
uent named, natural configuration, jN . The stretches of collagen
fiber families and smooth muscle cells from their own natural
configurations to the current configuration are written as

kk
n ¼ Gc

hk
k (1)

km
n ¼ Gm

h kh (2)

where Gc
h and Gm

h are the homeostatic stretches of collagen and
smooth muscle cells, respectively. We have assumed the same
stretch for all four fiber families [7,11]. kk is the stretch of kth
fiber family from jR to j and is given as

kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkh sin akÞ2 þ ðkz cos akÞ2

q
(3)

where ak is the angle between the kth collagen fiber family and
the one in the axial direction. ak takes the values of
a1 ¼ 90 deg; a2 ¼ 0 deg, and a3 ¼ a4 ¼ a, for the collagen fiber
families aligning along the axial, circumferential, and two
diagonal directions, respectively. In previous studies [6,11], a
was assumed as 45 deg fixed, but in other studies [33,40] a was
estimated in their parameter estimations. By treating a as an
unknown in the parameter estimation, the anisotropic mechanical
behavior is taken into account for the collagen fiber families.

Additionally, the 2D homeostatic stretch tensor of elastin Ge

which is the mapping from jN to jR, is written as

Ge ¼ diagfGe
1;G

e
2g (4)

where Ge
1 and Ge

2 are elastin’s homeostatic stretches in circumfer-
ential and axial direction, respectively. The tensors of elastin,
from its natural configuration jN to the current configuration
(under tension), are defined as

Fe
n ¼ FGe (5)

Ce
n ¼ FeT

n Fe
n ¼ GeT

CGe (6)

Fig. 1 Different configurations of the cut specimen and con-
stituents of the aorta
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For constituents, the stored energy functions per unit mass are
given by

we Ce
n

" #
¼ ce

2
Ce

n 11½ & þ Ce
n 22½ & þ

1

Ce
n 11½ &C

e
n 22½ & ' Ce

n 12½ &
2
' 3

( )
(7)

wk kk
n

$ %
¼ ck1

4ck2

exp ck2
kk2

n ' 1
$ %2

& '
' 1

( )
(8)

wm km
n

" #
¼ cm1

4cm2

exp cm2
km2

n ' 1
$ %2

& '
' 1

( )
(9)

for elastin, collagen fiber families, and smooth muscle, respec-
tively. ce, ck1

, ck2
, cm1

, and cm2
are intrinsic material parameters,

and Ce
n½ij& are components of Ce

n.

In addition to the above passive energy functions, a smooth
muscle cell is associated with an active muscle tone for the energy
per unit mass given as [41]

wm
act ¼

S

qR
kh þ

1

3

kM ' khð Þ3

kM ' k0ð Þ2

( )

(10)

where kM and k0 are the stretches at which the active force is at
the maximum and at zero, respectively. S is the stress when
the smooth muscle has its peak contraction and qR is the density
of the aortic wall. We set the values as kM ¼ 1:4, k0 ¼ 0:8,
S ¼ 54 kPa, and qR ¼ 1050 kg m'3 [6].

The passive and active stored energy functions for the aortic
wall per unit of mass are given by

Wpas ¼ /ewe þ /mðwmÞ þ
X4

k¼1

/c
kw

k (11)

Wact ¼ /mwm
act (12)

where /e and /m are the elastin and smooth muscle mass frac-
tions, respectively. /c

kðkth element of matrix /cðkÞ) is the mass
fraction of kth collagen fiber families where /c ¼ ½0:1; 0:1;
0:4; 0:4&ð1' /e ' /mÞ. /e is estimated in our estimation
approach, while similar to the previous studies [6,36,42] for the
contribution of smooth muscle cells a pre-assigned value of 0.15
is used for /m. For the membrane model, the passive and active
membrane stress (tension) can be calculated by [36]

Tpas ¼
2

J
F
@wpas

@C
FT (13)

Tact ¼
1

kz

@wact

@kh
(14)

where wpas ¼ MRWpas for the passive strain energy function
and wact ¼ MRWact for the active strain energy function per unit
reference area, with MR being the total wall mass density per unit
reference area and J ¼ detF. Finally, the overall membrane stress
in the wall is

T ¼ Tpas þ Tacteh ( eh (15)

Considering that jI is the traction free configuration,
T ¼ 0 for F ¼ FR. In order to calculate the Cauchy stress, the
membrane stress must be divided by the wall thickness h (under
tension) which by the incompressibility assumption can be calcu-
lated as

h ¼ MR

qRJ
(16)

We have 11 unknown parameters, which we will estimate using
nonlinear regression. These parameters are the intrinsic material pa-
rameters ce; ck1

; ck2
; cm1

; cm2
, the prestretches of constituents

Gc
h;G

m
h ; Ge

1; Ge
2, the elastin mass fraction /e, and the angle of the

diagonal collagen fiber family a with respect to the axial direction.

2.2 Nonlinear Regression. We estimate model parameters
for 17 subjects using experimental data provided by Vande Geest
et al. [39,43]. They have studied specimens harvested from 21
healthy human AAs for a wide range of ages of 19–78 years old.
We did not incorporate the data of four specimens in our study.
The reason for this is that age and gender information were not
provided for two of the subjects and test data was highly noisy for
the other two specimens. The biaxial tests performed in the
experiment account for seven sets of axial to circumferential ten-
sion ratios: 1:0.1, 1:0.5, 1:0.75, 1:1, 0.75:1, 0.5:1, and 0.1:1. We
utilize the stress-stretch results for parameter estimation. The
best-fit parameters are obtained by minimizing the difference
between the experimentally measured and theoretically calculated
Cauchy stress for each specimen with the addition of penalty
terms for the constituents’ homeostatic stress values and aortic
wall thickness.

Due to the nonlinear nature of the problem and the large num-
ber of unknown parameters, we need to carefully select the total
number of estimation parameters; otherwise, the parameter
estimation has a high cost in computation and results in multiple
answers for each specimen (cf, overfitting problem [32]). Further-
more, in order to make the parameter estimation efficient, it is
divided into two steps: (1) while five parameters are temporary
fixed, the other parameters are estimated with penalty terms using
the biaxial tests from Vande Geest et al. [39] and (2) the results of
the first parameter estimation (for six parameters) are used as the
initial values for the full parameter estimation. For the first step,
we prescribe the fixed values for prestretches and the angle,
Ge

1; Ge
2; Gc

h; Gm
h ; and a, which were obtained from the previous

literature. The values are listed from the literature [6,33,36,40,44]
along with the averaged values in Table 1. In the second step, all
the fixed values and penalty functions are removed for the full pa-
rameter estimation, except the penalty terms for homeostatic
stresses and aortic wall thickness. In vascular G&R computational
models, the stress-mediated mechanical homeostasis is generally
assumed [34] but the exact values are not known. The thicknesses
of aortic specimens are not available; therefore, we use the
reported mean thickness of 1.4 mm [6]. We consider the thickness
of the aorta and the average homeostatic stress in each constituent
(elastin and collagen fibers) in the cost function as penalty terms,
wherein the cost function minimizes the best-fit parameters with
some tolerance. We set the homeostatic circumferential stress in
elastin and collagen fiber families at 100 kPa [6], and the homeo-
static thickness of the aortic wall at 1.4 mm [6]. The goal function
e is defined as

Table 1 Prestretches and the angle between axial and diagonal
fibers for five studies in the literature. These values are aver-
aged and fixed at the first step in the parameter estimation.

Source Ge
1 Ge

2 Gc
h Gm

h a (deg)

Zeinali-Davarani et al. [44] 1.22 1.23 1.034 1.165 45
Zeinali-Davarani et al. [36] 1.25 1.25 1.07 1.2 45
Wilson et al. [6] 1.29 1.30 1.05 1.10 45

1.18 1.29 1.03 1.10 45
1.34 1.25 1.06 1.10 45
1.19 1.21 1.03 1.11 45

Roccabianca et al. [40] 1.2 1.2 1.08 — 45.83
(averaged)

Ferruzzi et al. [33] — — — — 45.82
(averaged)

Initial values 1.24 1.25 1.05 1.13 45.21
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e ¼
X

experiment

fðTth
zz ' T exp

zz Þ
2 þ ðTth

hh ' T exp
hh Þ

2gþ a1ðth;ehh ' 100Þ2

þ a2ðth;c
hh ' 100Þ2 þ a3ð!th ' 0:0014Þ2 (17)

where

th;ehh ¼ qRceGe
1

2 1' 1

Ge
1

4Ge
2

2

* +
(18)

th;chh ¼
qRck1

1' /m ' /e Gc
h

4 ' Gc
h

2
" #

exp ck2
Gc

h
2 ' 1

" #2
n o

)
X4

k¼1

/c
k sin akð Þ2 (19)

where Tth
zz and T exp

zz are theoretical and experimental axial stresses,
respectively, and Tth

hh and T exp
hh are theoretical and experimental

circumferential stresses, respectively. th;e
hh and th;chh are theoretical

homeostatic stresses (at the mean pressure) in circumferential

direction in elastin and collagen fiber families, respectively. !th is
the calculated homeostatic thickness of the aortic wall. Adding
these penalty terms reduces the uncertainty of our nonlinear
parameter estimation and guides us toward a more reliable
estimation. Coefficients a1 and a2 are chosen by trial and error

so that the circumferential homeostatic stresses in elastin (th;ehh ) and

collagen (th;c
hh ) do not deviate from their expected values (100 kPa)

by more than 10%. Additionally, coefficient a3 is set to keep

the estimated thickness (!th) within 5% error from its reported
value (0.0014 m). By trial and error, we set a1 ¼ a2 ¼ 10'3

and a3 ¼ 2) 107.
For the nonlinear regression minimization tool, we use the

fminsearch function in MATLAB (Mathwork, Natick, MA). This
function uses the Nelder–Mead simplex method for optimization.
The goal function is to minimize e. We consider two criteria for

stopping the optimization. Iteration is terminated if either the
changes in e or the changes in parameters are smaller than
TolFun¼ 10'5 or TolX¼ 10'5, respectively.

2.3 Bayesian Approach for the G&R Computational
Model. This study is one step toward the ultimate goal of subject-
specific calibration of G&R modeling. In this section, Bayesian
calibration is briefly explained and the importance of prior distri-
bution is interpreted. Calibration is the term used to describe the
inverse process of fitting a model to data, referred to as inference
[45,46]. We consider a problem in which we have a computer
model (e.g., a G&R computational model) of a physical system
(aorta) along with observations of the system (real patient’s CT
scan images and experimental tests). The Bayesian model is a nat-
ural choice for the incorporation of prior information (assumed
distribution of parameters), physical observations, and other infor-
mation related to the model [45]. Using the Bayesian calibration,
the posterior distributions are constructed and the calibrated
parameters are evaluated based on those distributions. Then, we
insert the calibrated parameter values of the computer model
again to predict the growth of the AAA in a future time by using
the predictive distribution in the Bayesian model. The framework
of Bayesian calibration is briefly illustrated in Fig. 2.

The different stages of application of the Bayesian theorem are
illustrated in Fig. 2. Pðhjage; genderÞ is the conditional joint distri-
bution of the model parameters, which we aim to construct in the
current study. The histograms illustrate the Bayesian approach
more clearly; in reality, however, it is not possible to represent a
joint distribution with more than two random variables other than
showing the distribution for each variable separately. The prior
distribution will be constructed with estimated parameters for the
17 healthy aortas mentioned previously. From the prior distribu-

tion, we perform multiple sampling ðh
*

1; h
*

2; …; h
*

nÞ and for each
sample we run the G&R simulation (e.g., pressure/flow induced
vascular adaptation, aging, local AAA expansion) separately. One

output of the G&R is a distribution for the parameter X
*

. For

Fig. 2 Schematic drawing of Bayesian calibration of a G&R model. Pðhjage; genderÞ, PðXjh; age; genderÞ, and
PðhjX; age; genderÞ denote the conditional joint (prior) distribution, likelihood function, and posterior distribution of the
model parameters, respectively.
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example, X
*

could be the maximum diameter of the AA that is
measurable from the CT-scan image of the patient. Although we
have chosen just one set of parameters for each simulation, due to
the uncertainty modeled in the G&R model, the output will have a
distribution. Using these distributions, we construct the likelihood
function PðXjh; age; genderÞ. The last stage is to use the Bayes
theorem and build the posterior distribution for model parameters.
The posterior distribution PðhjX; age; genderÞ is more reliable
than the prior distribution as it considers more patient-specific
information (X; age; gender) while reducing the uncertainty of the
prior distribution caused by the nonlinearity of the estimation pro-
cess. This posterior distribution will be a better candidate when
used as a model parameter distribution for the patient-specific
G&R simulation.

The Bayesian approach, however, is less helpful when there is
no consensus about what the prior distribution should be. We
know that prior information is a key part of the Bayesian inference
and represents information about the uncertain parameters that
are combined with the probability distribution of new data to
yield the posterior distribution, which in turn is used for future
inferences and the related decisions. In general, the key issues in
setting up a prior distribution are: (1) information used to
construct the prior distribution, and (2) properties of the resulting
posterior distribution (conjugate family). Here, we treated the
nonmeasurable (estimated) model parameters in this statistical
model as random variables. Since we know the age and gender of
the patients to whom the biaxial test data is related, we can update
our prior knowledge using the conditional joint distribution of
parameters. So, if we want to achieve the results from Bayesian
calibration, the preliminary step should be achieving our main
goal of constructing the prior distribution of the parameters. An
overview of our approach in building the prior distribution is
illustrated in Fig. 3.

2.4 Correlation Study and Joint Distribution. Recently,
more papers have reported the potential relation between the
mechanical behavior of aortic tissues with subject-specific infor-
mation such as age, health conditions, genetics, and diet [47].
Although associated with other individual characteristics (e.g.,
cigarette smoking, having vascular diseases, genetics) [48,49],
gender and age are considered to be the basic but most relevant
available variables for arterial mechanics. Therefore, using the
experimental data, we study the correlation between the estimated
parameters with age and gender. The framework can be, however,
general enough so that the other variables can be implicated in
specific applications. The population Pearson correlation study is
widely used in statistics to find the correlation (linear dependency)
between two sets of data. We assume that the data sets are

correlated if the correlation coefficient jqj> 0.3 and the
P-value< 0.1. For the calculation of q and P-value, R software is
used.

We assume that the best-fitted values of parameters are the rep-
lications of random variables with an unknown distribution. Our
goal is to find the best distribution that can fit to the estimated
parameters. Considering the correlation of each parameter with
age and gender, we divide our 11 parameters into two groups:
Group-I with parameters that show correlations with age or gender
and Group-II with parameters having no correlation with age and
gender.

For Group-I, a regression between parameter values and age
is used. For simplicity of regression, and by investigating
the estimated parameters we choose two terms age and 1=age.
The regression model used for the parameter XI from Group-I is
given by

XI ¼ aþ b1 * ageþ b2

age
þ e (20)

where e is the standard normal distribution, e + Nð0;r2Þ. For
regression of each parameter, we observe the R2 value, the P-
value of the regression, and the P-value of each coefficient
ða; b1; b2 Þ. Although both terms ðage; 1=ageÞ in the regression
model could be used in which R2 became maximum, we found
that for most cases (based on our observations) using just one
term sufficiently described the relation of the parameter with age,
and we do not need to have all terms in our regression equation.
Based on the regression model introduced in Eq. (20), parameter
XI has the conditional normal distribution as

XI + N aþ b1 * ageþ b2

age

,,,,age; r2

 !

(21)

For Group-II, we investigated distributions via transformations in
order to find the best distribution for each parameter. In order to
find which original distribution or transformed distribution pro-
vides a better representation of a specific parameter, we use the
Anderson–Darling statistic (AD) and P-values. Between the two
distributions, the one with smaller AD and higher P-value is a bet-
ter candidate. Using MINITAB (Minitab Inc., State College, PA), we
compare the AD and P-value of the original and transformed dis-
tribution for each parameter in Group-II: Box–Cox and Johnson
transformations, normal, lognormal, three-parameter lognormal,
exponential, two-parameter exponential, Weibull, three-parameter
Weibull, gamma, three-parameter gamma, logistic, loglogistic,
and three-parameter loglogistic distributions.

Fig. 3 Flow chart illustrating the steps involved in the construction of the prior distribution
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Using the Box–Cox transformation, we transform each of
the parameters in Group-II ðXIIÞ to new parameters ðYÞ. The
Box–Cox transformation is one of the useful transformations that
tends to make data more normally distributed. However, this is
not guaranteed [50] and the results of the transformation should
be evaluated on whether they have normal distributions or not.
The Box–Cox transformation function is given by

Y ¼
Xc

II ' 1

c
for c 6¼ 0

log XII for c ¼ 0

8
><

>:
(22)

where c is the transformation parameter. Based on the value for
c, the distribution for Y would be different. Using the log-
likelihood function, we find the optimum value for c so that Y has
the smallest standard deviation. However, this does not guarantee
normality and we must check whether the normal distribution
assumption for each parameter ðYÞ is acceptable. A hypothesis
test with the null hypothesis that the transformed parameter ðYÞ
has a normal distribution can determine whether our assumption
for normality is valid. The hypothesis is tested for

H0 : H1 :
Y has normal distribution Y does not have normal distribution

(23)

If the P-value is large enough ðP-value > 0:05Þ, we fail to reject
the null hypothesis and assumption of normality is acceptable (but
not proved). We fit a normal distribution to the transformed pa-
rameter Y. So

Y + Nðl; s2Þ (24)

where l and s are the mean and standard deviation of the fitted
normal distribution. Using the fitted normal distribution combined
with the Box–Cox transformation function, the distribution of the
original parameter XII would be

fXII xIIð Þ ¼
1

s
ffiffiffiffiffiffi
2p
p exp '

y xIIð Þ ' l½ &2

2s2

( )
(25)

where yðxIIÞ is either equal to ðxc'1
II =cÞ or to log xII , depending on

the result from our analysis using Eq. (22).
The final step is to construct the joint distribution of the trans-

formed parameters Y of Group-II and the parameters of Group-I,
XI . We combine these two groups and rename these new parame-
ters as Z (just for representing purposes).

Now considering that all the parameters ðZ1;Z2; …; Z11Þ have
normal distributions ðXIÞ or conditional normal distributions (Y),
we build the multivariate normal distributions by calculating the
sample covariance matrix as

!Rij ¼ !ijrirj (26)

where Rij is the element in the ith row and jth column of the sam-
ple covariance matrix !R. !ij is the correlation coefficient between
Zi and Zj and ri is the standard deviation of Zi. Finally, we con-
struct the multivariate normal distribution as [51]

PZ z1; z2;…; z11ð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð Þ11j!Rj
q exp ' 1

2
Z' !lð ÞT !R'1

Z' !lð Þ
* +

(27)

where !l is the mean vector !l ¼ ½l1;l2…;l11&, li is the mean of
Zi for which the correlated parameters with age is a function of
age, Eq. (20), and for which the rest of the parameters is a con-
stant value, Eq. (24). The ð1' xÞ100% confidence interval for
the mean vector !l is given by [51]

k !l ' Zð ÞT !R'1
!l ' Zð Þ ,

k ' 1ð Þl
k ' l

Fl;k'l xð Þ (28)

where k is the sample size and l is the dimension of the con-
structed multivariate normal distributions. In our problem k ¼ 17
and l ¼ 11. Fl;k'lðxÞ is the x critical value of the F-distribution, l
is the degree-of-freedom in the numerator, and k is the degree-of-
freedom in the denominator. Any vector of Z that satisfies
the above inequality would be in the ð1' xÞ100% confidence
interval of the mean vector !l.

3 Results

3.1 Best-Fit Values. Using nonlinear regression, we estimated
the parameters for 17 specimens. The R2 values revealed a good
fit between the theoretical values and estimated values from the
experimental measurement for the Cauchy stress ðR2

avg ¼ 0:954Þ.
Estimated values for parameters are provided in Table 2.

In order to see the variation with respect to age in the mechani-
cal behavior of the aorta, two samples of fitting plots for a
19-year-old male and a 78-year-old female for both circumferen-
tial and axial data are shown in Fig. 4. The dotted lines show the
experimentally measured data and the solid lines show the theo-
retically calculated values using the best-fit parameters from
Table 2. Age dependency of the aorta material behavior is well
illustrated in Fig. 4. Figures 4(a) and 4(b), which represent the
19-year-old male’s data show more extensible and linear material
behavior in comparison to Figs. 4(c) and 4(d), which illustrate
stiffer and more exponential shape behavior.

3.2 Correlation. Table 3 shows the correlation coefficients q
and P-values for the correlation study between parameters with
age and gender. Results show that parameters do not have any
correlation with the gender of patients. Considering this, we can
combine information of both genders into one category to con-
struct the joint conditional distribution of all parameters. We
found moderate to strong correlations of parameters with age. The
elastin mass fraction, /e, shows a very strong negative correlation
with age (q ¼ '0:760; P ¼ 0:0000 < 0:1).

3.3 Fitting of Parameter Distributions. Based on the results
from Table 3, cm1

; Gm
h ; Ge

1; Ge
1; and a which did not show any

correlation are categorized as Group-II, and ce; ck1
; ck2

; cm2
;

Gc
h; and /e are categorized as Group-I.
Table 4 provides the results of the regression for the parameters

in Group-I. In the regression analysis, the regression P-value is
based on the null hypothesis that the residuals do not follow nor-
mal distribution (where the residuals are the differences between
the real values for the parameter at given ages of specimens sub-
tracted by the predicted values using the regression relation).
Hence, smaller regression P-values indicate the reliability of the
regressions, and as it has been listed in Table 4, all the regression
P-values are smaller than 0.1. All coefficient P-values listed in
Table 4 are smaller than 0.1 except in two cases where they are
0.308 and 0.274 for cm2

and ck2
, respectively. Although high

coefficient P-values will generally result in higher regression
P-values, as illustrated in Table 4, regression P-values of
ck2

and cm2
are still small enough to indicate a reliable regression.

R2 of the regressions are also listed in Table 4. Looking over R2 in
the table, we found that they were not very close to 1, but this did
not indicate that regression results were not valuable or trustwor-
thy. In this regression study, we were able to model the changes
of parameters due to the changes in the age of the patient, but
some other information has been missed due to our lack of knowl-
edge about the patient’s condition. In this regression study, the R2

value indicates the portion ðR2Þ of the change in the parameter
value (response) with the possibility to be captured by the regres-
sion model, age (predictor), and what portion ð1' R2Þ of the
change is modeled by normal error ðeÞ.
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Table 2 Best-fit parameters for the constitutive mixture model

No.
Age
(yr) Gender

ce

ðJ kg'1Þ
ck1

ðJ kg'1Þ ck2

cm1

ðJ kg'1Þ cm2
Ge

1 Ge
2 Gm

h Gc
h /e

a
ðdegÞ R2

1 19 M 51.90 78.56 0.67 11.72 3.25) 10'6 1.459 1.370 1.237 1.351 0.302 47.0 0.994
2 22 F 56.22 672.18 2.54 62.96 2.37 1.431 1.306 1.062 1.104 0.497 43.7 0.994
3 23 M 31.37 57.26 0.40 44.17 3.48 1.809 1.335 1.080 1.451 0.266 41.9 0.992
4 25 M 60.49 77.81 0.92 0.31 3.20 1.368 1.434 1.392 1.354 0.304 40.7 0.989
5 32 M 75.20 1415.60 5.14 0.28 10.82 1.273 1.359 1.256 1.054 0.214 47.8 0.983
6 35 F 33.76 558.05 5.95 197.48 4.16 1.784 1.016 1.023 1.107 0.263 43.4 0.866
7 39 M 57.43 966.44 8.83 3.06) 10'3 33.94 1.391 1.389 1.223 1.070 0.078 46.2 0.927
8 47 M 93.51 689.78 16.22 15.06 4.91) 10'9 1.198 1.303 1.200 1.078 0.083 45.1 0.941
9 47 F 66.757 527.54 9.8063 0.88 2.51) 10'13 1.304 1.510 1.955 1.096 0.156 47.1 0.984
10 47 M 99.66 1762.60 2.15 1.64 26.90 1.206 1.204 1.146 1.048 0.295 45.9 0.978
11 50 F 157.75 3292.20 7.48) 10'7 20.06 1.47) 10'13 1.102 1.169 1.163 1.028 0.214 45.9 0.961
12 61 M 75.99 1484.27 15.61 2.19) 10'6 2.64 1.274 1.301 1.801 1.052 0.076 43.0 0.966
13 66 M 73.07 1425.11 7.45 54.50 3.73) 10'13 1.316 1.186 1.073 1.056 0.203 44.5 0.948
14 69 M 253.2 1958.9 99.062 3.14 2.85) 10'13 1.054 1.109 1.521 1.033 0.101 41.6 0.966
15 71 M 31.17 1927.70 6.77 0.32 121.41 1.790 1.489 1.095 1.039 0.036 50.7 0.871
16 75 F 63.73 2529.92 2.03) 10'20 0.47 173.92 1.365 1.214 1.079 1.031 0.063 51.7 0.874
17 78 F 113.94 887.82 60.41 3.86) 10'3 2.93 1.189 1.111 1.578 1.052 0.069 44.0 0.985

Median 66.8 966.4 6.8 7.4 4.2 1.316 1.303 1.200 1.056 0.203 45.1 —
Mean 82.1 1194.8 16.1 29.5 35.1 1.371 1.283 1.117 1.287 0.189 45.3 —

Fig. 4 Stress–stretch curves for experimental results (dots) from Vande Geest et al. [40,46], and best-fit constitutive model
(lines) for seven biaxial tension controlled protocols with Tzz:Thh equal to (i) 0.1:1, (ii) 0.5:1, (iii) 0.75:1, (iv) 1:1, (v) 1:0.75, (vi)
1:0.5, and (vii) 1:0.1. (a) and (b) Nonaneurysmal AA of a 19-year-old male axial and circumferential, respectively. (c) and (d)
Nonaneurysmal AA of a 78-year-old female axial and circumferential, respectively.

Table 3 Correlation coefficients and P-values of the parameters’ correlation with age and gender. When jqj> 0.3 and a
P-value < 0.1, the parameters are correlated with age and gender (indicated in bold face).

ce ck1
ck2

cm1
cm2

Gc
h Gm

h Ge
1 Ge

2 /e a

Age q 0.409 0.526 0.502 '0.278 0.455 20.685 '0.234 '0.331 '0.326 20.760 0.315
P-value 0.103a 0.007 0.040 0.280 0.066 0.002 0.366 0.194 0.201 0.000 0.218

Gender q 0.001 '0.182 0.033 '0.351 '0.122 0.280 '0.063 0.029 0.337 '0.128 '0.170
P-value 0.998 0.485 0.901 0.167 0.640 0.276 0.811 0.912 0.185 0.626 0.513

aP-value for ce is not smaller than 0.1 but because it is very close to 0.1, and also considering the value for q we accept that ce has correlation with age.
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Between all the examined distributions and transformations
(mentioned in Sec. 2.4), the Box–Cox transformation was the best
choice based on the AD and P-values for all five parameters in
Group-II. Table 5 illustrates the optimum values for the transfor-
mation parameter, c, for each parameter in Group-II. Using the
maximum likelihood estimator, we found c so that the trans-
formed parameters had the smallest standard deviation. Informa-
tion (mean and standard deviation) regarding the fitted normal
distributions to the transformed parameters, Y, is also provided in
Table 5 with corresponding P-values. In the table, we have
listed two columns for P-values, for two normality tests. P-valueb

indicates that the normality test has been performed on the origi-
nal best-fit values, and P-valuea demonstrates that the normality
test has been performed on the transformed values. P-values that
are less than 0.1 lead to the rejection of the null hypothesis of the
normal distribution. Information regarding the P-valueb shows
that original best-fit values (before transformation) for cm1

; Gm
h ;

and Ge
1 do not follow the normal distribution. However, P-valueb

for Ge
2 and a are good enough that we can fit the normal

distribution directly to the original best-fit values and no transfor-
mation is needed. Ge

2 and a follow the normal distributions
as Ge

2 + Nð1:283; 0:1392Þ and a + Nð45:31; 3:0042Þ. Results for
the P-valuea show that the normal distribution is an acceptable
candidate for Gm

h and Ge
1 after transformation. However, cm1

does
not follow the normal distribution even after transformation. At
this stage, we accept the normal distribution for cm1

after transfor-
mation, c0m1

, although the P-value ¼ 0:081 does not indicate a
strong statement.

3.4 Mean Values and Confidence Range. Based on the
results shown in Tables 4 and 5, we calculated the mean values
and confidence intervals of all parameters for the given three ages
of 45, 60, and 75 years old, shown in Table 6. This table contains

Table 4 Regression results for parameters in Group-I

Parameter a (P-value) b1 (P-value) b2 (P-value) Regression P-value r R2

ce 128.2 (0.000) 0 '1792 (0.093) 0.097 51.1 0.17
ck1

2420.1 (0.000) 0 '47,654 (0.004) 0.004 699.9 0.44
ck2

'17.1 (0.274) 0.661 (0.04) 0 0.040 23.3 0.25
cm2

'30.7 (0.308) 1.13 (0.066) 0 0.066 45.0 0.21
Gc

h 0.904 (0.000) 0 8.30 (0.000) 0.000 8.2) 10'2 0.63
/e 4.14) 10'1 (0.000) '4.7) 10'3(0.000) 0 0.000 8.2) 10'2 0.58

Table 5 Box–Cox transformation results and fitted normal distribution to the transformed parameters. P-valueb indicates that nor-
mality test has been performed on original transformation (before transformation), and P-valuea indicates that the normality test
has been done on best fit values after transformation.

Fitted normal distribution

Parameter c Transformation function (or transformed parameter) Mean Standard deviation P-valueb P-valuea

cm1
0.122

c
0

m1
¼ ðcm1

Þ0:122 ' 1

0:122

0.321 4.82 <0.005 0.081

Gm
h '3

Gm0
h ¼

1' ðGm
h Þ
'3

3

0.145 0.083 <0.005 0.359

Ge
1 '2

Ge0
1 ¼

1' ðGe
1Þ
'2

2

0.215 0.084 0.027 0.603

Ge
2 — ' 1.283 0.139 0.886 —

a — ' 45.31 3.004 0.718 —

Table 6 Parameters’ mean value and 90% confidence intervals for 3 different ages of 45, 60, and 75 years old. The confidence
interval for each parameter is shown outlined in brackets.

Source Mean value [confidence interval] from current study Wilson et al. [6]

Age (yr) 45 60 75 47 50 66 69

ce 88.38 [66.74,110.02] 98.33 [76.69,119.97] 104.31 [82.67,125.95] 74 87 72 101
ck1

1361.12 [1064.73,1656.51] 1625.87 [1329.48,1922.25] 1784.71 [1488.33,2081.10] 1747 2667 1136 2610
ck2

12.65 [2.78,22.51] 22.56 [12.69,32.43] 32.48 [22.61,42.34] 10.6 16.0 11.2 20.8
cm1

73.92 [6) 10'5,2500] 73.92 [6) 10'5,2500] 73.92 [6) 10'5,2500] 24.2 30.9 15.2 40.4
cm2

20.15 [1.09,39.21] 37.10 [18.04,56.16] 54.05 [34.99,73.11] 11.8 11.7 11.4 12.9

Ge
1 1.382 [1.088,1.847] 1.382 [1.088,1.847] 1.382 [1.088,1.847] 1.29 1.18 1.34 1.19

Ge
2 1.283 [1.224,1.342] 1.283 [1.224,1.342] 1.283 [1.224,1.342] 1.30 1.29 1.25 1.21

Gc
h 1.088 [1.054,1.123] 1.042 [1.008,1.077] 1.015 [0.980,1.049] 1.05 1.03 1.06 1.03

Gm
h 1.269 [1.011,1.870] 1.269 [1.011,1.870] 1.269 [1.011,1.870] 1.10 1.10 1.10 1.11

/e 0.203 [0.168,0.237] 0.132 [0.097,0.167] 0.062 [0.027,0.097] 0.30 0.22 0.23 0.08

a 45.31 [44.04,46.58] 45.31 [44.04,46.58] 45.31 [44.04,46.58] fixed at 45.00
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information about the effects of aging on the parameter values
and the confidence intervals. Using the confidence intervals, we
can compare our results with previous studies, making it easier to
determine whether our findings are similar or significantly differ-
ent from the literature.

As illustrated in Table 6, the mean values and the confidence
intervals of ce; ck1

; ck2
; cm2

; Gc
h; and /e changed for different

ages due to their correlation with age. On the other hand,
cm1

; Ge
1; Ge

2; Gm
h ; and a revealed no correlation with age; hence,

their values remained the same for all three ages.
In the interest of comparison, we run five simulations: three

simulations using values provided in Table 6 for three ages of 45,
60, and 75 years old and two using median and mean values repre-
sented in Table 2 for model parameters. Simulation is a tension
test on a square specimen under a uniaxial stretch in the circum-
ferential direction while keeping the stretch in the axial direction
constant (1.0). The stress–stretch results of those simulations have
been illustrated in Fig. 5.

3.5 Multivariate Normal Distribution. In Table 6, we calcu-
lated the correlation coefficients for all parameters in Z for which
c0m1

; Gm0
h ; and Ge0

1 are transformed, Ge
2 and a are the original

parameters from Group-II (Table 5), and ce; ck1
; ck2

; cm2
;

Gc
h; and /e are the original parameters from Group-I (Table 4).

The correlation coefficients and P-values, which indicate correla-
tion, are shown in bold face in Table 7.

Using the correlation results between the parameters, we calcu-
lated the covariance matrix using Eq. (26). Table 7 contains infor-
mation of the correlation matrix (i.e., correlation coefficients !ij).
Also, ri and rj are the standard deviations extracted from Tables 4
and 5. Calculated covariance matrix is illustrated in the Appendix.

The mean vector is calculated using the information of transfor-
mations and regressions from Tables 4 and 5. In the mean vector,
we used the same notation as in Table 7. In addition, we have a
bar symbol used for !l and all parameters indicating that these are
sample means based on the data

!l ¼

!ce : 128:2' 1792

age

!ck1
: 2420:1' 47; 654

age

!ck2
: '17:1þ 0:661 age

!c 0m1
: 0:321

!cm2
: '30:7þ 1:13 age

!G
e0

1 : 0:215

!G
e
2 : 1:283

!G
c
h : 0:904þ 8:3

age

!G
m0

h : 0:145

!/
e

: 0:414' 0:0047 age

!a : 45:31

2

6666666666666666666666666666664

3

7777777777777777777777777777775

:

Using the covariance matrix, !R, in the Appendix and the mean
values vector above, the multivariate normal distribution condi-
tioned on age was constructed using Eq. (27). Construction of this
joint distribution was one of our major goals for this study. As
mentioned before, this distribution was built to be utilized in the

Fig. 5 Comparison between simulation results using five dif-
ferent parameter sets, 45, 60, and 75 years, are results of the
simulation using parameters reported in Table 6. “Mean” and
“Median” are the results of the simulation using the mean and
median of estimations for each parameter in Table 2,
respectively.

Table 7 Correlation coefficients between all parameters (Zi)

ck1
ck2

c0m1
cm2

Ge0
1 Ge

2 Gc
h Gm0

h /e a

ce q 0.498 0.52 '0.13 '0.24 0.46 0.38 20.99 '0.33 '0.17 '0.23
P-value 0.042 0.031 0.62 0.346 0.062 0.123 0 0.195 0.509 0.381

ck1 q 0.44 '0.21 0.43 0.97 '0.38 '0.40 '0.40 20.58 0.46
P-value 0.080 0.412 0.088 0.000 0.131 0.114 0.114 0.014 0.067

ck2
q 0.04 '0.08 0.48 0.00 20.53 '0.39 20.61 '0.17

P-value 0.882 0.754 0.052 0.998 0.03 0.117 0.009 0.506

c0m1
q 20.72 '0.29 '0.37 0.15 '0.39 0.45 '0.23

P-value 0.001 0.253 0.142 0.556 0.117 0.069 0.377

cm2
q 0.42 '0.35 0.23 0.04 20.51 0.40

P-value 0.09 0.172 0.365 0.881 0.038 0.11

Ge0
1 q '0.26 20.46 '0.42 20.67 0.44

P-value 0.319 0.063 0.094 0.003 0.078

Ge
2 q '0.41 0.44 0.14 '0.28

P-value 0.102 0.078 0.59 0.273

Gc
h q 0.29 0.19 0.21

P-value 0.254 0.459 0.424

Gm0
h q 0.12 0.13

P-value 0.644 0.631
/e q '0.34

P-value 0.185
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future study which focuses on the Bayesian calibration of
the G&R model. The distribution constructed here will be used as
the prior distribution.

The 90% confidence interval for all the parameters was calcu-
lated using the joint distribution. One should consider that in both
the joint distribution and the confidence interval construction, we
used the transformed parameters from Group-II (Table 5) and not
the original parameters. The 90% confidence interval calculated
as

ð!l ' ZÞT !R'1ð!l ' ZÞ , 19:7 (29)

where Z is the vector of parameters’ values. Hence, the parame-
ters are in the 90% confidence interval of their mean value if they
satisfy the above inequality, constructed using the joint distribu-
tion. Both mean values and confidence intervals are specific to the
patient through the age information.

4 Discussion

Ex vivo biaxial tests of human data have been of significance in
accurately estimating the mechanical behavior of the AA. Stiffen-
ing of the aorta with aging was reported in multiple studies [39],
emphasizing the importance of age in patient specific modeling.
This study is to develop a systematic method to first estimate
model parameters linked with the most important stress bearing
constituents which are collagen, elastin, and smooth muscle cells.
Secondarily, estimated values combined with subject-specific
data, age, were used to construct conditional model parameter dis-
tributions, referred to as prior distributions. In the current study,
the constructed prior distributions captured the mechanical behav-
ior of the aorta with respect to the age of the patients. The con-
structed joint distribution of parameters can be directly utilized
for patient-specific G&R simulations. In previous approaches
(e.g., Ferruzzi et al. [33]), they have suggested that the median of
best fit values (e.g., median in Table 2) can represent the average
mechanical behavior. In addition, they have reported the mean
values as a representative for parameters of each age group. How-
ever, we can clearly see in Fig. 5 that the mean and median values
of parameters are not able to completely capture the average
mechanical behavior. The effects of age on the stress–stretch
curves have been illustrated well by the current approach, which
is consistent with the stiffening aorta with aging [39].

Since the model is nonlinear and the number of unknown
parameters is relatively high, in order to avoid overestimation and
to also enhance the computational efficiency, we applied our
parameter estimation method in two steps. In the first step, we
used our previous knowledge of prestretches and angle between
fibers [6,33,36,40,44] and fixed the values for five parameters. At
the same time, we have added penalty terms to the goal function
to narrow down the search area by providing a reasonable wall
thickness and homeostatic stress. The second-step parameter esti-
mation utilized the first step information while it minimized the
constraints (e.g., penalty terms) to reduce the bias for ensuring
local minima. The results of the final parameter estimation
revealed a good fitness with the experimental stress–stretch data
with an average R2 of 0.954 while well satisfying the homeostatic
conditions. Using this two-step estimation, we save a relatively
good amount of time while at the same time we can decrease the
uncertainty in our parameter estimation. Similar to Roccabianca
et al. [40] and Ferruzzi et al. [33], the aortic wall was assumed to
consist of an elastin dominated amorphous matrix and four colla-
gen fibers with the addition of smooth muscle cells. In terms of
the number of unknown parameters that were among them: ours
(11), Ferruzzi et al. [33] (8), and Roccabianca et al. [40] (8). One
important difference between our study and their studies is that
Ferruzzi et al. [33,34] did not consider prestretch for constituents,
while Roccabianca et al. [40] considered prestretch but with pre-
assigned fixed values, and in our study we considered prestretch
values and estimated them using the parameter estimation method.

Although adding prestretches to the parameter estimation will
increase the chance of overestimation due to the increased number
of parameters, by performing the two-step parameter estimation
and using the previous knowledge in the literature, the potential
issue was prevented.

In the current study, the mass fraction of each parameter has
been defined separate from the intrinsic material parameters. In
contrast, these parameters in the two studies of Refs, [33,40] have
been combined together wherein, for example, the elastic parame-
ter reported as c is equivalent to ce:qR. /e in our study. Although
defining the mass fractions and material parameters separately in
the strain energy function increases the number of parameters, it
makes the model capable of capturing the effects of age on the
constituents’ intrinsic properties. Moreover, both Ferruzzi et al.
[33] and Roccabianca et al. [40] considered different material
parameters for collagens in different directions, ci

1 and ci
2, where

i ¼ 1, 2, 3, and 4, represent the circumferential, axial, and two
diagonal directions. In our model, however, we assumed that the
intrinsic material property for all collagen fibers in different direc-
tions were the same. Nonetheless, different specified mass frac-
tions (with respect to the estimated mass fraction of all collagen
fibers, /c) for each direction (circumferential, axial, two diago-
nals) can lead to different collagen material properties in different
directions of the artery.

Despite the differences between models in different studies,
some comparisons can be performed. Roccabianca et al. [40] used
pre-assigned values of Ge

1 ¼ Ge
2 ¼ 1:2 and Gc

h ¼ 1:08. In our
study, those prestretches were obtained from parameter estima-
tion. Reported prestretches for elastin are, however, close to
the mean values, !G

e
1 ¼ 1:382 and !G

e
2 ¼ 1:283, as well as

inside and close to the constructed 90% confidence intervals,
Ge

1 : ½1:088; 1:847&; Ge
2 : ½1:224; 1:342&, respectively. Further-

more, for the collagen prestretch, we found a correlation with age,
resulting in a nonfixed value for Gc

h. Based on the results of the
current study, Gc

h changes from 1.088 for a 45-year-old subject to
1.015 for a 75-year-old subject. The parameter value is, hence,
close for the ages near 45 years old to that of Roccabianca et al.
[40] but the value becomes smaller as the subject gets older. The
angle of diagonal collagen fiber family affects the degree of ani-
sotropy for the mechanical behavior of the artery. Ferruzzi et al.
[33], Roccabianca et al. [40], and the current study estimated the
mean values of 45:82 deg; 45:36 deg, and 45:31 deg, respec-
tively. Wilson et al. [6] utilized a very similar model to this study
and estimated model parameters for four patients. Although they
fixed the diagonal fiber’s angle (45 deg), we found a consistency
between our estimations and theirs. We can see that almost all of
their estimated values lay in the 90% confidence intervals reported
in Table 6.

Based on the correlation study, we found that ce and /e, which
are the elastin’s intrinsic material property and mass fraction,
have a weak positive and a strong negative correlation with age,
respectively. The decrease of elastin content with aging (negative
correlation of /e with aging) in the aortic wall has been reported
previously in Refs. [52–54]. In addition to a reported decrease of
elastin with aging, to some extent, there are considerable varia-
tions in elastin’s behavior when the healthy aorta is transforming
into an aneurysm. Although we have not investigated various
pathological conditions in the current study, we found it interest-
ing to mention them due to their similarity with age related
changes in elastin. Rizzo et al. [55] illustrated a 92% decrease in
the elastin content and a 54% increase in the collagen fiber content
in the AAA wall in comparison with the healthy aorta. He et al.
[56] reported histological findings of a decreased elastin content
from /e ¼ 0:227 in a healthy aorta to /e ¼ 0:024 in an AAA. As
it has been mentioned, the decrease of elastin content in the aortic
wall is one of the initiators of AAA, which happens in older
populations.

In addition to the decrease in mass, a reduction in crosslinks of
elastin has been reported by a decrease in desmosine and isodes-
mosin with aging [52], which results in fragmentation of elastin.
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Fragmented elastin represents a stiffer and less extensible behav-
ior. This behavior can be captured by the increase of ce in the
model. We found a weak positive correlation for ce with aging
which may correspond to the fragmentation due to aging.
However, none of the two mentioned studies [33,40] have
reported statistical analyses indicating whether there is any corre-
lation between c and age. Ferruzzi et al. [33] reported mean values
of c for three age intervals of below 30, 30–60, and above 60 years
old as c ¼ 19:34; 9:68; and 3:22 kPa, respectively. Using our
results, we calculated c for those three intervals and the results are
c ¼ 17:58; 15:82; and 9:85 kPa. The results are comparable with
the first group (less than 30 years old group), but the values are
higher for the older patients. Our findings suggest that this
decrease is related to the decrease of elastin’s mass fraction with
respect to aging (Table 2), rather than the intrinsic elastin’s mate-
rial parameter, ce. As illustrated in Table 3, Ge

1 and Ge
2 did not

show any correlation with age. It appears that large amounts of
elastin are produced during early age (neonatal period) [54], and
during that period a person’s aorta is growing with increased pre-
stretches of elastin. Our finding is, however, that elastin’s pre-
stretches are not correlated with age in the range of 19–78 years
old. We should mention that this is not a contradiction because
the age range of our study (19–78 years) is far from the neonatal
period in which most of the aorta growth happens. Therefore, our
finding suggests that the properties of elastin may not be signifi-
cantly changed due to age while its content (mass fraction) does.

As we report in Table 3, we found that both collagen intrinsic
material parameters, ck1

; ck2
and mass fractions /c, increased

with aging. This is also consistent with Ferruzzi et al. [33],
reported the increase of ci

1 and ci
2 with aging, although there

were some differences between the two models. There are less
collagen fibers in the aorta during infancy and childhood, however
during a process known as fibrosis these fibers start to accumulate
with age. Increases of collagen fibers and its crosslink products
with age have also been reported in Ref. [52].

One of the difficulties with the parameter estimations of the
nonlinear model is determining whether the best-fit values repre-
sent the local or overall optimum values. This task, however,
becomes more difficult when the number of unknown parameters
increases. Hence, we improved our estimation by adding three
penalty terms to the goal function. Although we were able to fit
the simulation to the experimental results ð !R2 ¼ 0:954Þ, we
believe that more investigations are needed both experimentally
and numerically to find more realistic bounds for each parameter.
Even with the information that we have about each parameter’s
expected value, which will result in a more trustable estimation,
we still need enough experimental data (experimental tests on
AAAs, [57]) to better construct the distribution of each parameter.

The direction of the current research on G&R simulation is to-
ward enhancing the precision of estimation and the prediction
capability of the mechanical behavior of the arterial wall, exploit-
ing advanced computational models and statistical methods. A
G&R model of the AAAs, for instance, will use the conditional

prior distribution combined with patient-specific data to estimate
the AAA expansion rate and rupture risk. This model can be ulti-
mately utilized by physicians in decision making for patients.
Finally, we have constructed the prior distribution necessary for
the future study which is the Bayesian calibration of G&R model.

5 Conclusion

Toward the goal of patient-specific modeling, one critical step
is to have the patient-specific model parameters. The significance
of the AAA model parameters on the G&R simulation results has
been emphasized by Wilson et al. [6]. Considering the strong
effect of model parameters on the G&R simulation results, popu-
lation averaged model parameters may not be the best option for
patient specific modeling. In the current study, a new methodol-
ogy is introduced to consider available subjects’ information, age
and gender, in interpreting parameter estimation results. In the
fitted distributions, the effect of known factors (here age and gen-
der) is modeled through regression and the effect of unknown or
unavailable factors is modeled by the inherent randomness charac-
teristic of the distribution. For the application of patient specific
simulation, the age of the subject will be inserted in the con-
structed parameter model and the best estimated values with con-
fidence intervals can be calculated. These values will be used for
the patient’s specific simulation.

In the current study, we considered age and gender in our corre-
lation study but a future work can include more subject-specific
information, mentioning that such information was not available
to the authors of the current study. This information can be
categorized in multiple groups as patient-related information like
vascular diseases and genetics and specimen-related information
like the location of the specimen in the aorta, thickness of the
specimen, and constituent ratios. If the information is available,
then it can be easily included in the distribution construction
approach and build a more reliable distribution that can model
parameters that are more specific to the patient.
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Appendix

The covariance matrix ð!RÞ was constructed using Eq. (26)

!R ¼

2611:210 17800:1 932:747 '14:896 '541:827 '3:801 '3:308 '1:659 1:734 '0:934 '41:172
17800:12 489860:0 2011:350 '315:282 13913:42 '28:882 '31:806 '40:793 '6:029 '21:545 931:297
932:747 2011:350 542:890 '28:701 '201:491 '1:128 '1:352 '0:556 0:952 '0:742 '24:160
'14:896 '315:282 '28:701 23:232 '36:321 0:090 '0:157 0:104 '0:258 0:232 '1:704
'541:827 13913:42 '201:491 '36:321 1944:810 1:045 0:822 '0:976 '1:241 '1:507 100:795
'3:801 '28:882 '1:128 0:090 1:045 0:007 0:004 0:003 '0:004 0:002 0:041
'3:308 '31:806 '1:352 '0:157 0:822 0:004 0:019 0:004 0:003 0:000 0:117
'1:659 '40:793 '0:556 0:104 '0:976 0:003 0:004 0:007 0:000 0:003 '0:099
1:734 '6:029 0:952 '0:258 '1:241 '0:004 0:003 0:000 0:007 '0:002 '0:058
'0:934 '21:545 '0:742 0:232 '1:507 0:002 0:000 0:003 '0:002 0:007 '0:089
'41:172 931:297 '24:160 '1:704 100:795 0:041 0:117 '0:099 '0:058 '0:089 9:024

,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,
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