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Abstract

We are developing a series of systems science-based clinical tools that will assist in

modeling, diagnosing, and quantifying postural control deficits in human subjects. In

line with this goal, we have designed and constructed a seated balance device and asso-

ciated experimental task for identification of the human seated postural control system.

In this work, we present a Quadratic Programming (QP) technique for optimizing a

time-domain experimental input signal for this device. The goal of this optimization

is to maximize the information present in the experiment, and therefore its ability to

produce accurate estimates of several desired seated postural control parameters. To

achieve this, we formulate the problem as a non-convex QP and attempt to locally

maximize a measure (T-optimality condition) of the experiment’s Fisher Information

Matrix (FIM) under several constraints. These constraints include limits on the input

amplitude, physiological output magnitude, subject control amplitude, and input signal

autocorrelation. Because the autocorrelation constraint takes the form of a Quadratic

Constraint (QC), we replace it with a conservative linear relaxation about a nominal

point, which is iteratively updated during the course of optimization. We show that this
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iterative descent algorithm generates a convergent sub-optimal solution that guarantees

monotonic non-increasing of the cost function while satisfying all constraints during

iterations. Finally, we present example experimental results using an optimized input

sequence.

1 INTRODUCTION

In recent years, clinical researchers have expanded the study of the human seated postural

control system through the application of control theoretic analysis techniques [1, 2]. These

studies often rely on accurate models of the underlying dynamics of the human in order to

make the analysis tractable. However, humans possess a number of characteristics which may

be impossible to measure accurately a priori, such as moments of inertia of body segments,

center of mass (COM) locations, or feedback control gains. These parameters may instead

be recoverable via examination of an experimental response. In the control sciences field,

the set of techniques for recovering unknown or partially unknown model parameters from

an experimental response are known as “system identification” techniques.

The design and optimization of system identification experiments is both a well-studied

and ongoing problem in the literature [3–10]. Recent results in experimental optimization

tend to favor the technique of optimizing the spectrum of the input signal [6–9]. This

technique poses a number of challenges for human experiments. Human subjects tend to

fatigue quickly during motor control testing, which limits the feasible length of each trial.

This issue makes frequency-domain techniques for optimal experimental design difficult to

use, because the time sequence may be too short to produce accurate results at low frequency

or may not maintain sufficient frequency resolution over the entire spectrum. Thus, it would

be preferable to design inputs in the time-domain (for short input sequences). Additionally,

it is difficult to adapt frequency-domain optimization techniques to the number and variety

of constraints within which an optimal solution for human testing must remain. For example,

while it is obviously crucial to never apply enough force to a subject to cause injury, it is

also important to make sure that the frequency characteristics of the input do not cause the

subject to switch control strategies [11] (depending on the study goals). The input must not
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cause the subject’s motion amplitude to grow large enough to cause injury. Finally, inputs

given to human subjects must not become predictable enough for the subject to adopt a

feedforward-type control strategy when only the feedback mechanisms are to be estimated,

which is the case in this work.

In the time-domain, a problem which optimizes the information in an input sequence

while satisfying the preceding constraints can be most readily formulated as a nonconvex

Quadratically-Constrained Quadratic Program (QCQP), which tend to be NP-hard (Non-

deterministic Polynomial-time hard) for many non-trivial problems [12]. While complete

solutions to nonconvex QCQP’s are not yet available, current techniques for solving or ap-

proximately solving these problems tend to exploit some combination of semi-definite relax-

ation, linear relaxation, or randomization [12,13].

Our contributions in this work are as follows. We formulate a time-domain Quadratic

Program (QP) designed to optimize the design of an experimental input for identification

of parameters in a Linear Time-Invariant (LTI) human seated postural control model. In

this approach, we maximize the trace of the experiment’s Fisher Information Matrix (FIM),

an objective known as T-optimality [14], while ensuring that the system does not violate

a number of input and state constraints. Maximizing a measure of the FIM will improve

the quality of the estimated parameters [15]. We formulate a novel quadratic constraint on

the input sequence’s autocorrelation function to ensure that the input is both unpredictable

to subjects and possesses the desired frequency characteristics. By computing an iterative

linear relaxation of this autocorrelation constraint, we are able to formulate the problem as a

tractable nonconvex QCQP which can be solved locally at each iteration. We show that this

iterative algorithm generates a convergent sub-optimal solution that guarantees monotonic

non-increasing of the cost function while satisfying all constraints during iterations. Our

approach is applied to optimize the design of a human seated balance identification exper-

iment. We show simulation results for this design using model parameters derived from a

preliminary set of subject parameters, and apply the optimized input to an experimental

subject using a novel backdrivable robotic seat that we have developed. The experimental

results demonstrate that we are able to reduce the variance of parameters recovered from

an experiment using the optimized input versus parameters recovered from an experiment
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using a preliminary input of similar difficulty. A preliminary version of this paper without

statistical experimental data was presented at the 2014 American Control Conference [16].

The rest of this paper is organized as follows: in Section 2, we present the dynamic

model for the seated balance task. In Section 3, we derive the QP formulation for the

experimental optimization and present the constraints under which the optimization will

operate. In Section 4, we show results from an input optimization for one subject, and apply

the optimized input to the subject. Finally, in Section 5, we offer some concluding remarks.

Standard notation will be used throughout the paper. Let R, R+, and B denote, re-

spectively, the sets of real, positive real, and binary (i.e. {0, 1}) numbers. The operators of

expectation and covariance matrix are denoted by E and Cov, respectively. A random vector

x, which has a multivariate normal distribution of mean vector µ and covariance matrix Σ,

is denoted by x ∼ N (µ,Σ). An identity matrix of size n × n is denoted as In. A vector of

zeros of length n is denoted as 0n. The Kronecker product is denoted by the operator ⊗.

The vectorization of a matrix A is denoted by vec(A). Other notation will be explained as

it is used.

2 EXPERIMENTAL MODELING

We have developed a highly backdrivable torque-control robot that we intend to use for this

and future studies on human seated postural control. This robot consists of a direct-drive

backdrivable electric motor (CDDR C062C, Kollmorgen Inc.) coupled to a free-spinning seat

platform (Fig. 4), displacement sensors in the motor, and a real-time electronic control unit

(cRIO-9022, National Instruments Inc.). The motor is capable of providing peak torque in-

puts of up to 117 Nm. Since there is no gearbox or flexible coupling between the motor and

seat, we can safely control the torque applied to the seat in a feedforward manner by speci-

fying the motor current. This highly backdrivable configuration allows us to easily generate

haptic effects (virtual springs, dampers, and other force fields) in addition to torque dis-

turbances without needing direct torque measurements for feedback. Applying these effects

through a direct-drive motor means that both stability and disturbance characteristics can

be fine-tuned without physically reconfiguring the system and without needing to compen-
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sate for complicated gearbox effects (stiction, backdrivability, etc.) in the control algorithm.

For safety purposes, the robot has mechanical stops at ±15 deg (±0.26 rad) which prevent

motions of the seat platform from exceeding this range. The combined seat and actuator,

along with control hardware, we refer to as the “backdrivable robot”.

Using this robot, we have designed a seated balance experiment based on the one per-

formed in [1]. In the current experiment, the subject sits atop the backdrivable robotic seat

which is free to pivot about an axis perpendicular to the coronal plane (Figs. 3 and 4). The

angle of the lower body from vertical is α1 and the angle of the upper body from vertical

is α2. Similar to the convention in [1], the portion of the subject and seat below the fourth

lumbar (L4) vertebrae is lumped into a single rigid element with mass M1 and moment of

inertia (about the COM) of J1. The COM is at a distance l1 from the pivot point of the seat.

Similarly, the portion of the subject above the L4 vertebrae is lumped into a rigid element

with mass M2 and moment of inertia J2 about the COM. The COM of the upper body is a

distance l2 from the L4 vertebrae. The L4 vertebrae itself is at a distance l12 from the seat

pivot. The human can apply a control torque uh about the L4 vertebrae, and additionally

possesses an intrinsic rotational stiffness kh and intrinsic rotational damping ch about L4.

We apply (through feedback) a virtual stiffness kr and a virtual damping cr about the pivot

point, in addition to a torque disturbance u. The sum of these torques produce the total

robot torque ur about the pivot point, i.e. ur = u − krα1 − crα̇1. The resulting dynamics

can be determined by application of Lagrange’s equation to the model in Fig. 3, resulting in

the dynamic equations

ur − uh = α̈1(J1 +M1l
2
1 +M2l

2
12)

+ α̈2M2l12l2 cos (α1 − α2)

+ α̇2
2M2l12l2 sin (α1 − α2)

+ ch(α̇1 − α̇2) + kh(α1 − α2)−M1gl1 sinα1

−M2gl12 sinα1,

(1)
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Figure 1: Experimental robot system, including backdrivable actuator and subject seat
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Figure 2: Real-time controller and motor amplifier for the compliant robot
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and

uh = α̈2(J2 +M2l
2
2)

+ α̈1M2l12l2 cos (α1 − α2)

− α̇2
1M2l12l2 sin (α1 − α2)

+ ch(α̇2 − α̇1) + kh(α2 − α1)−M2gl2 sinα2,

(2)

with g = 9.81 m/s2 the acceleration due to gravity.

We model the closed-loop dynamical structure of the coupled human/backdrivable robot

system as shown in Fig. 5. The plant model P represents the dynamics of the system

in Eqns. (1) and (2) linearized about the upright equilibrium point. The first output

z =
[
α1 α̇1 α2 α̇2

]T
contains measurements of all the states of the system in Fig. 3

and is assumed to be exactly measurable by the human (via vestibular and proprioceptive

mechanisms). The second output zr =
[
α1 α̇1

]T
contains measurements of the subset of

states (seat angle and rate) that are measurable by the robot via its displacement sensors.

There is a feedback controller R utilizing zr such that the robot can simulate a desired

dynamical system (in this case, a spring-damper system). The purpose of this controller is

to slow the unstable poles of the closed-loop system enough for the system to be stabilizable

by a human subject. Other studies of unstable seated balance commonly employ similar

techniques, such as adding physical springs [17,18] or having the seat balance on a hemisphere

instead of a point [1]. Our robot can additionally apply a torque disturbance u to the seat

which can be used as an excitation signal for system identification [15]. Both of these signals

are combined and converted into a torque through the robot motor M .

The model of the human has a feedback loop presumed to consist of a sensory delay e−τs

implemented as a 5th-order Padé approximation, i.e.

e−τs ≈ [30240− 15120τs+ 3360(τs)2 − 420(τs)3

+ 30(τs)4 − (τs)5]/[30240 + 15120τs

+ 3360(τs)2 + 420(τs)3 + 30(τs)4 + (τs)5],

and an output feedback controller K such that (if we ignore delays), the human control is

uh = Kz, where K =
[
−K1 −K2 −K3 −K4

]
. We also include an approximation of
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Figure 3: Simplified mechanical diagram of the seated balance experiment
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Figure 4: Subject on the backdrivable robot
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muscle dynamics using a first-order filter with time constant Tω. This formulation of the

human feedback loop is similar to that used in other studies on postural control [1] and

muscle control [19].

A motion capture system using LED markers is used to capture the upper and lower body

angles for external processing (Visualeyez Motion Capture System, Phoenix Technologies

Inc., Burnaby Canada). However, the angular rates (α̇1, α̇2) are not directly measurable, so

we reduce the plant output z to y =
[
α1 α2

]T
via the operator Dy, i.e.

y =

1 0 0 0

0 0 1 0

 z
= Dyz.

Additive white sensor noise w in the motion capture system is also presumed to exist.

A preliminary experiment was performed on a single subject in order to determine an

initial parameter vector estimate θ̂0 that could be used in subsequent optimizations. Because

it only involved a single subject, this testing was designated as non-regulated research by

the MSU Institutional Review Board (IRB). For this experiment, the virtual spring kr and

damper cr were empirically tuned so that the subject needed to apply feedback to stabilize

the seat, but did not tire excessively while maintaining upright balance. These values are

listed in Table 1. 10 trials of 30 seconds duration were performed. During each trial, the

subject was given an identical torque input u designed as a Pseudo-Random Binary Sequence

(PRBS) with significant power only below approximately 1 Hz. A PRBS sequence was

attractive for initial identification because it is in common use for system identification [15],

and has spectral characteristics similar to the “reduced-power” input method [20] that has

been used with success in human studies. The amplitude of this sequence was tuned to 6

Nm, which was the maximum amplitude that the subject could consistently stabilize for 30

seconds without the seat contacting the mechanical stops at ±0.26 rad. The subject was

given instructions to maintain stable upright posture on the seat while the perterbations

were being applied. For each trial, the resulting angles α1 and α2 were measured using the

motion capture system. “Successful” completion of a trial was defined as the subject being

able to complete the entire 30 second trial without contacting the mechanical stops.
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Figure 5: Block diagram of the seated balance experiment

We have determined a set of estimated model parameter values θ̂0 for the subject through

a combination of nonlinear least-squares fitting to this preliminary experiment, mean param-

eters fitted in a similar study [1], and tabulated data from subject height and weight [21]

with θ := [K1 K2 K3 K4 J1 J2 l1 l12 l2 τ Tω]T . The initial estimated values θ̂0 of these pa-

rameters are listed above the double lines in Table 1, in addition to the fixed parameters

below the double lines, which we assume can be recovered or specified for the system a priori.

3 EXPERIMENTAL OPTIMIZATION

3.1 Quadratic Program

Assume, for the moment, that the true parameter vector θ0 is known. Because all of the

subsystems are linear and rational-ordered, the closed-loop system in Fig. 5 with θ0 known
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Table 1: Initial estimated subject parameters θ̂0 (above double lines) and fixed parameters

(below double lines). The source of each parameter is given via the following labels: “LSQ”

parameters were determined via least-squares fitting to the preliminary experiment, and are

the mean of the values fitted in each of the 10 trials. “TAB” parameters were determined via

applying the tables in [21]. Parameters labelled “SPEC” could be tuned and were specified

prior to the experiment.

Parameter Value Source

K1 143.55 LSQ

K2 105.86 LSQ

K3 677.98 LSQ

K4 242.17 LSQ

J1 2.026 kg −m2 LSQ

J2 2.988 kg −m2 LSQ

l1 0.0022 m LSQ

l12 0.245 m LSQ

l2 0.395 m LSQ

τ 0.0252 s LSQ

Tω 0.0989 LSQ

M1 55 kg TAB

M2 39.5 kg TAB

kr 100 Nm/rad SPEC

cr 2 Nms/rad SPEC

kh 13.15 Nm/rad [1]

ch 4.72 Nms/rad [1]
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can be formulated as a discrete-time LTI state-space model of the form

xk+1 = A(θ0)xk +B(θ0)uk

yk = C(θ0)xk

ỹk = C(θ0)xk + wk,

(3)

with xk ∈ Rnx , uk ∈ R, yk ∈ Rny , wk ∼ N (0,Σ) ∈ Rny white and uncorrelated in time,

θ ∈ Rnθ , and some sampling time T . The true parameter vector θ0 is presumed to belong to

a compact set Θ such that

θ0 ∈ Θ = {ρ ∈ Rnθ | ρi,min ≤ θ0,i ≤ ρi,max} ,

∀i = 1, · · · , nθ.

If the parameter vector θ0 is known, then the matrices A(θ0), B(θ0), and C(θ0) of the closed-

loop model in (3) can be computed numerically using the MATLAB connect command (see

Appendix A). The system is defined over the time indices k ∈ K := {0, · · · , N} such that

tk = kT . We define the error ek between the nominal output yk and the noisy output ỹk for

a given time index k and the true parameter vector θ0 as

ek(θ0) := ỹk − yk
:= ỹk − C(θ0)A(θ0)xk−1 − C(θ0)B(θ0)uk−1.

(4)

For the remainder of this paper, we will drop the explicit notational dependence on θ in A,

B, and C.

Let us consider an experiment with an input sequence defined as u := [u0 · · ·uN−1]T .

Note that we can determine the system output yk at an arbitrary time index k ≥ 1 when the

input sequence [u0, u1, · · · , uk−1]T and initial state condition x0 are known. The complete

solution to the discrete-time state-space system given in Eqn. (3) is

yk = CAkx0 + C
k−1∑
i=0

Ak−i−1Bui.

Note that we can reconfigure this solution as a matrix operation:

y =


y1

y2

...

yN

 =


CA CB · · · 0

CA2 CAB · · · 0
...

...
. . .

...

CAN CAN−1B · · · CB




x0

u0

...

uN−1

 = GU.
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We now have a non-recursive solution y ∈ RNny for all time k ≥ 1 given U ∈ RN+nx .

Note that the first element in U is x0. We can now define a vector form of the error

e = ỹ − y =
[
eT1 eT2 · · · eTN

]T
∈ RNny .

The log likelihood function for a data set ỹ :=
[
ỹT1 · · · ỹTN

]T
given the true parametriza-

tion θ0 is

ln p(ỹ|θ0) =
N∑
k=1

ln p(ỹk|θ0)

= −N
2

ln 2π − N

2
ln |Σ|

− 1

2

N∑
k=1

eTk (θ0)Σ−1ek(θ0).

The maximum likelihood estimator for θ0 is then given by

θ̂N = arg min
θ∈Θ

(
1

N

N∑
k=1

eTk (θ)Σ−1ek(θ)

)
,

= arg min
θ∈Θ

JN(θ).

Under mild conditions [15,22], it can be shown that

lim
N→∞

θ̂N = θ0 = arg min
θ∈Θ

lim
N→∞

E {JN(θ)} w.p.1,

and that the prediction error converges in distribution to a normally distributed random

variable [15,22,23]
√
N
(
θ̂N − θ0

)
d→ N

(
0, I−1(u; θ0)

)
,

where I(u; θ0) is the FIM.

For a MIMO system, the FIM is an extension of the SISO case given in [24] and [25]:

I(u; θ0) = Eỹ|θ0

[(
∂ ln p(ỹ|θ)

∂θ

∣∣∣∣
θ=θ0

) (
∂ ln p(ỹ|θ)

∂θ

∣∣∣∣
θ=θ0

)T


=

 N∑
k=1

(
∂ek
∂θ

∣∣∣∣
θ=θ0

)T

Σ−1

(
∂ek
∂θ

∣∣∣∣
θ=θ0

) .
Taking the partial of ek with respect to the ith element of θ yields

∂ek
∂θi

= −∂yk
∂θi

, i = {1, · · · , nθ} .
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Then, we have
∂e

∂θi

∣∣∣∣
θ=θ0

= − ∂y
∂θi

∣∣∣∣
θ=θ0

= −∂G
∂θi

∣∣∣∣
θ=θ0

U := −HiU.

We can combine these matrices Hi for each θi to form

H =
[
H1 H2 · · · Hnθ

]
∈ RNny×nθ(nx+N).

Additionally, we form

U = Inθ ⊗ U ∈ Rnθ(N+nx)×nθ .

We can then form the FIM for the system in Eqn. (3) as

I (u; θ0) = (HU)T
(
IN ⊗ Σ−1

)
(HU) ∈ Rnθ×nθ , (5)

where all elements in H are assumed to be bounded, i.e., `h1 ≤ Hij ≤ `h2. Note that the

FIM is defined using the true parameter vector θ0 [15]. However, in reality an optimization

can only be performed based on the current best-estimate θ̂0 [15]. Therefore, we will proceed

from this point using θ̂0 in place of θ0.

Amongst a number of different optimality conditions [14], we choose the T-optimality

condition, which will maximize the trace of the FIM [5, 26, 27], and in turn provides an

objective that is quadratic in u. Because of the potentially large number of free variables in

u, choosing a cost function that is purely quadratic in u will allow us to efficiently solve the

problem using a QP algorithm later. We therefore use a cost J(u; θ̂0) defined by

J(u; θ̂0) = −trace
(
I(u; θ̂0)

)
. (6)

Note that both the FIM and J(u; θ̂0) are functions of the input sequence u, the initial

condition x0, and estimated parameters θ̂0 only. While the cost function J(u; θ̂0) is nonconvex

in u [5], a general quadratic programming solver can be used to perform the unconstrained

local minimization

u? = arg min
u
J(u; θ̂0). (7)
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3.2 Design Constraints

In this paper, the quadratic optimization in Eqns. (6)-(7) is subject to the following con-

straints:

• Input Limits. Since the direct-drive motor should be restricted to only apply a safe

amount of torque, we apply a constraint such that

−um ≤ u ≤ um, um ∈ R+.

• Output Constraints. There is a finite angular range over which both the robot seat

platform and the human torso can move. We therefore apply the constraint

−1N ⊗ ym ≤ GU ≤ 1N ⊗ ym,

where 1N is a vector of ones of length N , and ym ∈ Rp
+ defines the maximum amplitude

of each output individually. Additionally, the angular difference α̃ = α2−α1 is limited

by both the structure and flexibility of the subject’s lower back. By reformulating the

closed-loop system in Fig. 5, we can form a structure Gδ similar to G where u is the

input and α̃ is the output. If θ̂0 is known, then this reformulation can be performed

numerically in MATLAB using connect (see Appendix A). We then apply the constraint

−δα ≤ GδU ≤ δα, δα ∈ R+.

• Human Control Constraint. The human subject is only capable of generating a

finite amount of torque uh. We can again reformulate the closed-loop system in Fig. 5

to form a structure Gu similar to G where u is the input and uh is the output. Then,

we apply the constraint

−uhm ≤ GuU ≤ uhm, uhm ∈ R+.

• Autocorrelation Constraint. In addition to the preceding linear constraints, it

was desired to constrain the autocorrelation of the input sequence so as to reduce

predictability of the signal while maintaining desirable spectral characteristics. The

autocorrelation of a discrete real time sequence uk at lag j can be computed as

Ruu(u; j) =
∑
k

ukuk−j.
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We can reformulate this as the quadratic matrix multiplication

Ruu(u; j) = uTQ(j)u, (8)

where Q(j) ∈ BN×N is a Toeplitz matrix containing ones on its jth upper off-diagonal

and zeros everywhere else, e.g.

Ruu(u; 1) = uT



0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0


u.

We consider the term Ruu(u) (with j ommitted) to be the autocorrelation vector for

all lags j =
{

0, · · · , N
2
− 1
}
.

We desired the normalized autocorrelation of the first N/2 lags of the optimal input

sequence autocorrelation to be within some region of our preliminary experiment’s

PRBS signal autocorrelation R?
uu, i.e.

R?
uu − β ≤

Ruu(u)

Ruu(u; 0)
≤ R?

uu + β, (9)

where β > 0 is a scalar constant. The constraint in (9) is quadratic in u based on the

definition of Ruu(u; j) in (8).

Unfortunately, the optimization of J(θ0;u) subject to the constraints listed above is a

nonconvex QCQP, the solution of which is still an open research question. Therefore, we

propose an iterative linearization technique to find a good solution to Eqn. (7) in the next

section.

3.3 Proposed Iterative Descent Algorithm

Since we can not directly apply a quadratic constraint such as the one in Eqn. (9) to the

quadratic program, we propose to compute a linear relaxation of the autocorrelation about

a nominal vector û. This relaxation takes the form of a linearization based on a Taylor series
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expansion about û, i.e.

R̂uu(û;u; j) = ûTQ(j)û+ ûT
(
Q(j) +QT (j)

)
(u− û) .

This constraint is made slightly more conservative than the true quadratic constraint in Eqn.

(9) by shrinking the constraint boundary, i.e.

R?
uu − β + γ ≤ R̂uu(û;u)

R̂0
uu

≤ R?
uu + β − γ, (10)

where γ s.t. 0 < γ < β is a small constant. Note that we normalize R̂uu(û;u) by R̂0
uu, which

we define as R̂0
uu := Ruu(û; 0). Now, by ensuring that ũ = u− û is constrained to be small,

a local solution can be found that satisfies the linear constraint in Eqn. (10) but does not

violate the quadratic autocorrelation constraint Eqn. (9).

To ensure that the linearization in Eqn. (10) is both always valid and more conservative

than the true quadratic constraint Eqn. (9), we constrain the difference ũ = u− û such that

−δu ≤ ũ ≤ δu, δu ∈ R+. (11)

Therefore, when we allow only a small change in u, we may solve the following optimiza-

tion:

u? = arg min
u
J(u; θ0), (12)

subject to the constraints

−um ≤ u ≤ um,

−1N ⊗ ym ≤ GU ≤ 1N ⊗ ym,

−δα ≤ GδU ≤ δα,

−uhm ≤ GuU ≤ uhm,

R?
uu − β + γ ≤ R̂uu(û;u)

R̂0
uu

≤ R?
uu + β − γ,

−δu ≤ ũ ≤ δu.

(13)

An overall solution is found by computing a series of successive solutions u?i to the

problem of Eqn. (12) subject to the constraints in Eqn. (13). For each iteration i, we

perform a local linearization Eqn. (10) of the quadratic autocorrelation constraint in Eqn.
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Table 2: Iterative descent algorithm for optimization of the input sequence u

Input: (1) The estimated parameter vector θ̂0

(2) The initial nominal input sequence û

(3) The desired relative stopping tolerance Estop

Output: (1) The optimal input vector u?

1: Build A, B, and C from θ̂0

2: Compute G, Gδ, Gu, H
3: Let E > Estop

4: Let i = 1

5: while E > Estop do

6: Compute R̂0
uu = Ruu(û, 0)

7: Assemble U =
[
xT0 u

T

]T
8: Assemble I

(
u; θ̂0

)
= (HU)T (IN ⊗ Σ−1) (HU)

9: Solve for u?i and J(u?i; θ̂0) from the QP in Eqn. (12), subject to the constraints

in Eqn. (13)

10: Let E =
∣∣∣J(u?i;θ̂0)−J(u?(i−1);θ̂0)

J(u?(i−1);θ̂0)

∣∣∣
11: Let û = u?i

12: Let i = i+ 1

13: end while

14: Let u? = u?i

(9) about û = u?(i−1) and solve for u?i. Each solution u?i becomes û in the next iteration

of the solution. This is done so as to allow u to traverse a wide range while not violating

the input linearization constraint in Eqn. (11) at any point during the optimization. Each

solution u?i is found using MATLAB’s quadprog general quadratic programming solver in

combination with the yalmip modeling toolbox. Details of the solution procedure are shown

in Table 2.

Note that we are computing the optimization based on the estimate θ̂0, instead of the

true parameter vector θ0. This is a common problem in system identification, and can be

dealt with via a number of methods, such as iterative system identification techniques [28].
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3.4 Convergence Analysis

In this section, we discuss the convergence properties of the proposed iterative descent algo-

rithm proposed in Table 2.

First note that J(u?i; θ̂0) ≥ J(u?i+1; θ̂0) by the construction. Next we show that J has a

lower bound. This can be shown by the fact that the FIM in Eqn. (5) has an upper bound

with an assumption that all elements in H are bounded, i.e., `h1 ≤ Hij ≤ `h2. This follows

from the fact that

trace
(
I
(
u; θ̂0

))
= trace

(
IN ⊗ Σ−1HUUTHT

)
=vec(IN ⊗ Σ−1)Tvec(HUUTHT ) ≤ `T ,

(14)

since all elements in U are also bounded due to the input constraints in the constrained

optimization in Eqn. (12).

Since the value J has a lower bound which is −`T from Eqn. (14) and is monotonically

non-increasing during the iterations, it will converge to some value as iterations proceed.

Therefore, this iterative descent algorithm generates a convergent sub-optimal solution

that guarantees monotonic non-increasing of the cost function while satisfying all constraints

during iterations.

4 CASE STUDY

We have performed a case study on a single subject to demonstrate our experimental opti-

mization. The goal of the optimization is to determine an experimental input sequence that

will minimize a measure of the covariance for the estimated parameters. This is achieved

via a maximization of the experiment’s FIM trace subject to constraints as described in

(12)-(13). Using parameters θ̂0 from Table 1, G, Gu, and Gδ from Sec. 3 were computed

numerically using MATLAB’s connect function (numerical values listed in Appendix B). The

limits applied to the optimization are listed, along with their sources, in Table 3. We let

x0 =
[
0.01 0T9

]T
, and since the sensor noise for both elements of yk were approximately

equal and uncorrelated, we let Σ = I. The initial input û was the same PRBS signal given

to the subject in the preliminary experiment. Note that, in the preliminary experiment,
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Table 3: Limits used for the optimization procedure. The values of ym and δα are based

on the maximum simulated displacements that occurred during fitting to the preliminary

experiment. um is the maximum torque input level the subject found comfortable. uhm is

approximately half of the near-maximal lateral bending torque reported by male subjects

in [29]. β, γ, and δu were tuned.

Limit Value

um 20 Nm

ym

0.192

0.078

 rad

δα 0.252 Nm

uhm 60 Nm

β 0.16

γ 0.08

δu 0.05 Nm

the initial û was challenging enough that the subject required considerable practice to com-

plete the trials successfully (defined as no contact occurring with the mechanical stops at

α1 = ±0.26 rad on the device.)

The descent algorithm in Algorithm 2 was applied using the initial parameter vector θ̂0

from Table 1 and the initial PRBS input û. For an input sequence with length N = 300 and

a sampling time of T = 0.1 seconds, we were able to converge to a local suboptimal input

sequence (Estop = 1× 10−3) in approximately 3.5 hours on a 2.2GHz Xeon server.

4.1 Optimization Results

The optimal input u? along with the change in the objective function with increasing i

are shown in Fig. 6. We simulate the system in Fig. 5 with u(t) = u? to produce the

corresponding outputs y and differential angle α̃ (Fig. 7). The final signal autocorrelation

R?
uu and its constraints are also shown in Fig. 7. None of the other constraints for the

system were active. The solution u? produces an approximately 1.6 times improvement

relative to the initial û in the value of the objective function without violating any of the
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Figure 6: The upper plot shows the optimal input sequence u?. The lower plot shows the

change in the objective function J(u; θ̂0) with increasing iteration i.

listed constraints.

4.2 Experimental Application

To compare the variance of the parameters fitted using the optimal experiment, we performed

an experiment using the same subject tested in Sec. 2. This experiment was again designated

as non-regulated research by the MSU IRB. 10 trials of the 30 seconds length using the

optimal input u? were performed using an experimental setup otherwise identical to that in

Sec. 2. The subject was able to successfully complete the 10 trials of the experiment (no
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Figure 7: Simulated results using the optimal input u?. The upper plot shows the simulated

angles α1 and α2 versus time, along with their bounds. The center plot shows the differential

angle α̃ versus time along with its bounds. The bottom plot shows the optimal input signal

autocorrelation R?
uu along with its bounds, and the original signal autocorrelation Ruu for

comparison. The constraints on uh were not active during simulation.
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Table 4: Mean best-fit parameters θ̂N based on the optimal experiment. Fixed parameters

are the same as those given in Table 1.

Parameter Value

K1 270.31

K2 130.64

K3 803.28

K4 224.30

J1 3.060 kg −m2

J2 2.925 kg −m2

l1 0.0104 m

l12 0.2501 m

l2 0.3684 m

τ 0.0368 s

Tω 0.0315

mechanical stop contact), although the subjective difficulty of the the task was very high.

The resulting mean best-fit parameters θ̂N are shown in Table 4, and in general match well

with the parameters found in Table 1.

In Table 5, we compare the variance across 10 trials of the parameters fitted in the pre-

liminary experiment done in Sec. 2 with the parameters fitted from the optimal experiment.

It can be seen that, for almost all parameters, the optimal experiment reduced the variance

of the resulting fitted parameters compared to the initial PRBS input while the mean values

from the two estimators are similar.

Because the sequence u? is only optimal for a parameter vector θ̂0, in theory, this tech-

nique could be employed as part of a broader iterative procedure [28]. After a u? is found,

a subject can be tested using u? as the input and the resulting experimental response fitted

to find θ̂N . The parameters θ̂N can then be fed back as θ̂0 in the next iteration of the input

optimization and the process repeated until a desired level of convergence is achieved [28].
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Table 5: Variance of the parameters in θ̂0 vs the variance of the parameters in θ̂N .

Parameter θ̂0 Variance θ̂N Variance

K1 2727 2238

K2 2374 496.6

K3 5.306× 104 5840

K4 1.621× 104 1238

J1 1.031 0.2304

J2 0.228 0.298

l1 0.0007639 0.0005456

l12 0.0008781 0.001225

l2 0.004951 0.0009266

τ 0.0004225 0.000375

Tω 0.005771 0.0004575

5 CONCLUSIONS

In this work, we have demonstrated a QP technique for generating an optimal experimental

input for a human seated postural control identification experiment. To this end, we have

formulated a quadratic objective function based on a measure of the FIM that will maximize

the information present in the experiment for the proposed testing. This optimized input

was designed to minimize the variance of the parameters recovered from the human subject.

We have formulated a set of output, input, and control constraints, in addition to a unique

linearized autocorrelation constraint, such that the resulting input signal will be feasible for

the proposed testing. The resulting solution u? converged to a local solution without violat-

ing any of the prescribed constraints. We have additionally demonstrated an experimental

application of this input signal in conjunction with our backdrivable robot and shown that

the resulting recovered parameters from the subject have lower variance than those recovered

from a preliminary experiment, which is consistent with the goal of our optimization.

In future work, we intend to apply this technique in quantitative clinical testing, and

extend our formulation to produce input sequences that guarantee a minimum level of per-
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formance across a subject population.
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Appendix A

function dsys0=buildsys(params,flag)

J1=params.J1;

J2=params.J2;

M1=params.M1;

M2=params.M2;

l1=params.l1;

l12=params.l12;

l2=params.l2;

kr=params.kr;

cr=params.cr;

g=params.g;

kh=params.kh;

ch=params.ch;

K1=params.K1;

K2=params.K2;

K3=params.K3;

K4=params.K4;

delay=params.delay;

tc=params.tc;

T=params.T;

Ap=[ 0, 1, 0,0;...

-(J2*kh + J2*kr + M2*kh*l2ˆ2 + M2*kr*l2ˆ2 - M2ˆ2*g*l12*l2ˆ2 ...

- J2*M1*g*l1 - J2*M2*g*l12 + M2*kh*l12*l2 - M1*M2*g*l1*l2ˆ2)...

/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...
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-(J2*ch + J2*cr + M2*ch*l2ˆ2 + M2*cr*l2ˆ2 + M2*ch*l12*l2)...

/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...

(- g*l12*M2ˆ2*l2ˆ2 + kh*M2*l2ˆ2 + kh*l12*M2*l2 + J2*kh)...

/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...

(M2*ch*l2ˆ2 + M2*ch*l12*l2 + J2*ch)/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 ...

+ J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2);...

0, 0,0,1;...

(J1*kh + M1*kh*l1ˆ2 + M2*kh*l12ˆ2 - M2ˆ2*g*l12ˆ2*l2 + M2*kh*l12*l2 ...

+ M2*kr*l12*l2 - M1*M2*g*l1*l12*l2)...

/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...

(J1*ch + M1*ch*l1ˆ2 + M2*ch*l12ˆ2 + M2*ch*l12*l2 + M2*cr*l12*l2)...

/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...

-(- g*l2*M2ˆ2*l12ˆ2 - M1*g*l2*M2*l1ˆ2 + kh*M2*l12ˆ2 + kh*l2*M2*l12 ...

- J1*g*l2*M2 + M1*kh*l1ˆ2 + J1*kh)...

/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...

-(M1*ch*l1ˆ2 + M2*ch*l12ˆ2 + M2*ch*l2*l12 + J1*ch)/(M1*M2*l1ˆ2*l2ˆ2 ...

+ J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2)];

Bp=[ 0, 0;...

(M2*l2ˆ2 + J2)/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...

-(M2*l2ˆ2 + M2*l12*l2 + J2)/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2);...

0,0;...

-(M2*l12*l2)/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2),...

(M1*l1ˆ2 + M2*l12ˆ2 + M2*l2*l12 + J1)/(M1*M2*l1ˆ2*l2ˆ2 + J2*M1*l1ˆ2 + J2*M2*l12ˆ2 + J1*M2*l2ˆ2 + J1*J2)];

Cp=eye(4);

Dp=zeros(4,2);

Plant=ss(Ap,Bp,Cp,Dp);

Plant.inputname={'taur','tauh'};
Plant.outputname={'y1','y2','y3','y4'};

Ksys=ss(0,zeros(1,4),0,-[K1 K2 K3 K4]);

Ksys.inputname={'y1','y2','y3','y4'};
Ksys.outputname='Kout';
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[n,d]=pade(delay,5);

delaysys=tf(n,d);

delaysys.inputname='Kout';

delaysys.outputname='delaytau';

mdyn=tf(1,[tc 1]);

mdyn.inputname='delaytau';

mdyn.outputname='tauh';

if strcmp(flag,'output')

sys0=connect(Plant,Ksys,delaysys,mdyn,'taur',{'y1','y3'});
elseif strcmp(flag,'input')

sys0=connect(Plant,Ksys,delaysys,mdyn,'taur',{'tauh'});
elseif strcmp(flag,'delta')

subblock=sumblk('dy','y3','y1','+-');

sys0=connect(subblock,Plant,Ksys,delaysys,mdyn,'taur',{'dy'});
else

error('Not a recognized system formulation')

end

dsys0=c2d(sys0,T);
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Appendix B

System matrices for G using θ̂0:

A =



1.01 0.115 0.138 0.077 −0.000385 8.57e− 05 −0.000487 9.3e− 05 −0.000844 −0.00371

0.845 1.82 6.47 2.67 −0.00616 −0.000207 −0.00784 −0.000225 −0.0137 −0.0478

−0.005 −0.0106 0.972 0.0527 0.000249 −5.66e− 05 0.000314 −6.14e− 05 0.000545 0.00241

−0.565 −0.543 −2.94 −0.658 0.00407 7.64e− 05 0.00517 8.33e− 05 0.00905 0.032

−6.92e− 05 −5.31e− 05 −0.00042 −0.000117 −3.02e− 07 2.3e− 08 −3.89e− 07 1.88e− 08 −6.9e− 07 −2.59e− 06

−0.00646 −0.00465 −0.0232 −0.0101 8.92e− 06 4.43e− 06 1.13e− 05 4.82e− 06 1.97e− 05 3.88e− 05

0.242 0.184 1.38 0.408 0.000882 −6.29e− 05 0.00112 −6.82e− 05 0.00195 0.00752

4.13 3.02 14.5 6.52 −0.00909 −0.00312 −0.0115 −0.00338 −0.02 −0.0497

−41.7 −31.4 −267 −74 −0.152 0.016 −0.193 0.0174 −0.336 −1.33

−30.7 −22.9 −165 −52.6 0.0103 0.0218 0.0131 0.0236 0.0227 −0.0775



B =



0.00157

0.0297

−0.000627

−0.0117

−1.47e− 07

9.31e− 06

0.000416

−0.00138

−0.0458

−0.0147



C =

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0



System matrices for Gδ using θ̂0:

A =



1.01 0.115 0.138 0.077 −0.000385 8.57e− 05 −0.000487 9.3e− 05 −0.000844 −0.00371

0.845 1.82 6.47 2.67 −0.00616 −0.000207 −0.00784 −0.000225 −0.0137 −0.0478

−0.005 −0.0106 0.972 0.0527 0.000249 −5.66e− 05 0.000314 −6.14e− 05 0.000545 0.00241

−0.565 −0.543 −2.94 −0.658 0.00407 7.64e− 05 0.00517 8.33e− 05 0.00905 0.032

−6.92e− 05 −5.31e− 05 −0.00042 −0.000117 −3.02e− 07 2.3e− 08 −3.89e− 07 1.88e− 08 −6.9e− 07 −2.59e− 06

−0.00646 −0.00465 −0.0232 −0.0101 8.92e− 06 4.43e− 06 1.13e− 05 4.82e− 06 1.97e− 05 3.88e− 05

0.242 0.184 1.38 0.408 0.000882 −6.29e− 05 0.00112 −6.82e− 05 0.00195 0.00752

4.13 3.02 14.5 6.52 −0.00909 −0.00312 −0.0115 −0.00338 −0.02 −0.0497

−41.7 −31.4 −267 −74 −0.152 0.016 −0.193 0.0174 −0.336 −1.33

−30.7 −22.9 −165 −52.6 0.0103 0.0218 0.0131 0.0236 0.0227 −0.0775



B =



0.00157

0.0297

−0.000627

−0.0117

−1.47e− 07

9.31e− 06

0.000416

−0.00138

−0.0458

−0.0147


C =

[
−1 0 1 0 0 0 0 0 0 0

]
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System matrices for Gu using θ̂0:

A =



1.01 0.115 0.138 0.077 −0.000385 8.57e− 05 −0.000487 9.3e− 05 −0.000844 −0.00371

0.845 1.82 6.47 2.67 −0.00616 −0.000207 −0.00784 −0.000225 −0.0137 −0.0478

−0.005 −0.0106 0.972 0.0527 0.000249 −5.66e− 05 0.000314 −6.14e− 05 0.000545 0.00241

−0.565 −0.543 −2.94 −0.658 0.00407 7.64e− 05 0.00517 8.33e− 05 0.00905 0.032

−6.92e− 05 −5.31e− 05 −0.00042 −0.000117 −3.02e− 07 2.3e− 08 −3.89e− 07 1.88e− 08 −6.9e− 07 −2.59e− 06

−0.00646 −0.00465 −0.0232 −0.0101 8.92e− 06 4.43e− 06 1.13e− 05 4.82e− 06 1.97e− 05 3.88e− 05

0.242 0.184 1.38 0.408 0.000882 −6.29e− 05 0.00112 −6.82e− 05 0.00195 0.00752

4.13 3.02 14.5 6.52 −0.00909 −0.00312 −0.0115 −0.00338 −0.02 −0.0497

−41.7 −31.4 −267 −74 −0.152 0.016 −0.193 0.0174 −0.336 −1.33

−30.7 −22.9 −165 −52.6 0.0103 0.0218 0.0131 0.0236 0.0227 −0.0775



B =



0.00157

0.0297

−0.000627

−0.0117

−1.47e− 07

9.31e− 06

0.000416

−0.00138

−0.0458

−0.0147


C =

[
0 0 0 0 0 0 0 0 0 2.53

]
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