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Estimated Model Sets for Robust
Control
This paper proposes two techniques for reducing the number of uncertain parameters in
order to simplify robust controller design and to reduce conservatism inherent in robust
controllers. The system is assumed to have a known structure with parametric uncertain-
ties that represent plant dynamics variation. An original set of parameters is estimated by
nonlinear least-squares (NLS) optimization using noisy frequency response functions.
Utilizing the property of asymptotic normality for NLS estimates, the original parameter
set can be reparameterized by an affine function of the smaller number of uncorrelated
parameters. The correlation among uncertain parameters is detected by the principal
component analysis in one technique and optimization with a bilinear matrix inequality
in the other. Numerical examples illustrate the usefulness of the proposed techniques.
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Introduction
Plant dynamics variation abounds in practical control problems.

uch variation is caused by, e.g., the change in operating points
nd conditions, time-varying properties, and limited manufactur-
ng tolerance for cheap and massive production. For instance, in
he mass-spring-damper system, spring and/or damper coefficients

ay vary depending on the position of the mass due to nonlinear-
ty. Also, in batch fabrication, it is very costly to try to produce

illions of products with exactly same dynamics. Taking into
onsideration plant dynamics variation is crucial to achieve satis-
actory control systems for any conceivable situation.

In order to deal with plant dynamics variation, robust control
echniques �1� are known to be powerful tools. These techniques
re based on models representing dynamics variation, and various
odeling and system identification methodologies to acquire such
odels have been developed �2–4� in the last decades.
In modeling, we always have to consider the trade-off between

he accuracy and simplicity of the model. Although a complex
odel can capture system properties accurately, it is often not

referable for controller design purpose due to unduly high com-
lexity, leading to high computational cost. Especially, if we em-
loy too many parameters to represent dynamics variation, nu-
erical controller design based on modern robust control

echniques, such as �-synthesis and linear matrix inequality
LMI�-based controller synthesis �see, e.g., Ref. �5��, often falls
nto computational infeasibility, as well as unacceptably conserva-
ive system performances. Therefore, model set simplification is
n important step.

For a model set involving parametric variation, there are mainly
wo approaches to model simplification, i.e., first is the model
rder reduction �6� and parameter number reduction, and the latter
s the topic in this paper. Parameter reduction techniques that re-
uce the number of parameters in a single model have been de-
eloped by using sensitivity analysis and principle component
nalysis together �7,8�. In these paper, a goal is to find out such
arameters in an exactly known single model that does not influ-
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ence so much on the output. On the other hand, the main objective
of this paper is to present theoretically sound and yet practical
algorithms that will reduce the complexity in interrelated uncer-
tain parameters by detecting hidden correlations in estimated un-
certain parameters. To be practical, this reduction procedure takes
into account the parameter estimation error inherited from the
original noisy data.

One of the most standard techniques for parameter number re-
duction is the principal component analysis �PCA� �9�. One appli-
cation of PCA to parameter reduction in hard disk drive systems
was presented in Ref. �10�. However, pure PCA does not take into
account the effect of estimation errors and noise in experimental
data on parameter reduction. In this paper, we will discuss in
detail how the noise on frequency response function data affects
the parameter reduction stage.

This paper proposes parameter reduction techniques to simplify
robust controller design and to reduce the conservativeness inher-
ent in these controllers. The system is assumed to have a known
structure with parametric uncertainties caused by plant dynamics
variation. An original set of parameters is estimated by nonlinear
least-squares �NLS� optimization using noisy frequency response
functions. By utilizing the property of asymptotic normality for
NLS estimates, the original parameter set can be reparameterized
by an affine function of the smaller number of uncorrelated pa-
rameters. The correlation among uncertain parameters is detected
by PCA in one technique and optimization with a bilinear matrix
inequality �BMI� in the other. For the former technique, we will
assume that the true parameters are random variables generated by
an affine function of another uncorrelated random variables and
prove the asymptotic convergence of the identified parameter set
to the true parameter set. The latter technique has no convergence
analysis but it will be practically useful when the number of plant
samples is small, and thus, it is hard to perform any statistical
inference.

The paper is organized as follows. In Sec. 2, we give one ex-
ample to motivate a parameter reduction problem. In Sec. 3, we
review the NLS technique for parameter estimation. This section
also introduces our assumptions of the plant and the data. Section
4 discusses asymptotic properties, i.e., strong consistency and
asymptotic normality of the NLS estimates. Using the asymptotic

properties, Sec. 5 proposes parameter reduction techniques based
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n PCA and on optimization with a BMI. Numerical examples are
iven in Sec. 6 to illustrate the usefulness of the proposed tech-
iques.

The notation used in this paper is standard. The set of positive
eal numbers and positive integers are denoted by R+ and Z+,
espectively. The set of p dimensional real vector is Rp and the set
f p�q complex matrices is Cp�q. �If p=q=1, these indices are
mitted.� For a complex matrix M, Re�M� and Im�M�, respec-
ively, mean the real and the imaginary part of M and MT and M�

re, respectively, the transpose and the complex conjugate trans-
ose of M.

Motivating Example
Suppose that we would like to control a number of plants with

single controller. For robust control system design, we first build
mathematical model set that captures dynamics of these plants.
o this end, we pick up a relatively small number of sample
lants. Here, as an example, suppose that we select three plants
ith noisy frequency response function �FRF� data as in Fig. 1.
Since three plants are selected among a number of plants, our

ask is to construct a model set capturing not only these three
RFs but also the “intermediate” plant dynamics. To reduce the
onservatism pertaining to robust control systems, as well as to
implify robust controller design, we also would like the set to
ave a small size in some sense, and to be characterized by a
mall number of parameters. It is very natural to assume that each
f the true plant is subject to a common set of physical laws
hose parameters may vary due to another process. Hence, de-

ecting the process that generates parameter variation is essential
o improve robust performance.

As far as a model set with only parametric uncertainties is
oncerned, the standard procedure to this model set identification
roblem is as follows.

1. Guess and assume the plant structure with parameters. The
structure is assumed to be common to all the plants.

2. For each FRF, identify the parameters by some parameter
estimation method. That is, for many FRFs, obtain a set of
parameters.

3. Find correlations between the set of parameters, and reduce
the dimensionality of parameters.

In step 3, the most standard technique in data analysis is PCA
9�. One of our objectives in this paper is to propose PCA that
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Fig. 1 Three noisy FRF data
akes into account estimate error covariances under the assump-
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tions that a plant structure is known in step 1 and that nonlinear
least-squares estimates are used in step 2 for FRFs with a known
noise level.

Another objective is to propose a technique based on numerical
optimization. Here, under the same assumptions in steps 1 and 2
above, we will formulate an optimization problem with a BMI and
give a solution procedure for it. Although there is no convergence
analysis, the technique will be practically useful when the number
of samples is small.

3 Parameter Estimation by NLS
As is written in Ref. �12� �p. 13�, the model construction re-

quires three basic entities, that is the model structure, the data, and
the optimality criterion. In the following, we will explain what
these entities are in this paper. Throughout this paper, we assume
that the system to be modeled is a scalar system but the extensions
of the results in this paper to multivariable cases are straightfor-
ward.

3.1 Model Structure. It is assumed that we have a priori
information on the structure of a continuous-time linear time-
invariant true system.

�G�����s�, � � � � Rp �1�

where � is a parameter vector and � is a set determined by a
priori knowledge of parameters. �For example, we may know that
some parameters in � must be positive�. The structure of G may
come from either physical laws or experimental data. Simple ex-
amples are the structures of standard first- and second-order trans-
fer functions.

�G�����s� ª
K

Ts + 1
, � ª �K,T�T �2�

�G�����s� ª
K�2

s2 + 2��s + �2 , � ª �K,�,��T �3�

In what follows, we suppose that the true system is represented as

�G������s� �4�

with the true parameter vector ����.

3.2 Frequency Domain Experimental Data. For the true
system �4�, we take noisy FRF data as

Ĝm = �G������j�m� + em, m = 1, . . . ,M �5�

where �m�R+ is the frequency of the sinusoidal input signal,

Ĝm�C contains both gain and phase information, and M �Z+ is
the number of frequencies. The term em is a complex-valued white
noise random variable, with the following property:

e ª � �
Re�e1�
Im�e1� 	

]

�Re�eM�
Im�eM� 	 
 � N�0,�2I2M� �6�

This means that the 2M-dimensional real random vector e is gen-
erated by a normal distribution with zero mean and covariance
�2I2M.

Remark 3.1. Different types of noise models could be consid-
ered �as in Refs. �3,11�� if we know more about the sources of
noise. However, in this paper, we assume that FRF data are cor-
rupted by the generic Gaussian white noise as in Eq. �5�. The
origin of the complex-valued white noise em could be from the
asymptotic normal distribution of the Fourier transform of white
noise in the time domain experimental data �see more details in

Refs. �12,13��. The complex-valued white noise could be also
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iewed as the quantization and electronic noise from the imperfect
easurement system.

3.3 Nonlinear Least-Squares Optimization. For the given
odel structure �1� and FRF data

���m,Ĝm�:m = 1, . . . ,M�

e consider to find the least-squares estimate �̂M that minimizes
he residual sum of squares.

�̂M
ª arg min

���
�
m=1

M


Ĝm − �G�����j�m�
2 �7�

The minimization problem �7� is in general a nonconvex NLS
ptimization problem with a constraint ��� for which it is non-
rivial to guarantee the existence and the uniqueness of the global
olution. From now on, we assume the existence and the unique-
ess of the global minimizer �the NLS estimate of �� of the NLS
roblem.

Asymptotic Properties of NLS Estimates
Next, we will discuss two important properties of the NLS es-

imate �̂M, i.e., strong consistency and asymptotic normality
11,14�.

4.1 Strong Consistency. Our first concern is the consistency.
oughly speaking, the consistency relates to a fundamental ques-

ion: “Can we recover the true parameter �� by minimizing the
esidual in Eq. �7� for a large number of samples?” The precise
efinition is given next.

DEFINITION 4.1. An estimate �̂M of �� is strongly consistent if �̂M

onverges to �� almost surely (i.e., with probability one) as M (the
umber of data) goes to infinity.

A condition for strong consistency was presented in Ref. �15�.
THEOREM 4.1. (Theorem 6 in Ref. [15]). Let DM be a distance

etween two parameter vectors defined by

DM��,��� ª �
m=1

M


�G�����j�m� − �G������j�m�
2

f the following conditions hold, then the NLS estimate �̂M of �� is
trongly consistent: (i) DM�� ,��� /M converges uniformly to a
ontinuous function D�� ,��� and (ii) D�� ,���=0 if and only if �
��.
As an illustration of this theorem, let us consider a simple first-

rder structure

�G�����s� =
K

Ts + 1
�8�

here �ª �K ,T�T , K�0, T�0. Then by defining ��
�K� ,T��T, we have

DM��,��� ª �
m=1

M � K

Tj�m + 1
−

K�

T�j�m + 1
�2

�9�

n this case, provided that the frequency points ��m�m=1
M are taken

t even intervals within a fixed frequency range ��� , �̄�, we have
he uniform convergence in the condition �i�

�10�

n addition, it is easy to prove that, for the function D�� ,��� in Eq.
10�, the condition �ii� holds for �� 	�̄. Therefore, the NLS esti-

ˆ M �
ate � of � is strongly consistent in this example.
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4.2 Asymptotic Normality. If a NLS estimate is strongly
consistent, our next concern is to identify the distribution of the
NLS estimate. It turns out that under some assumptions, the NLS
estimate has asymptotically normal distribution. This property
will become important later in parameter reduction. To present our
result on asymptotic normality, we will introduce the following
concept.

DEFINITION 4.2. A model set G is said to be uniformly stable for
a set � if all the transfer functions in the set G���ª ��G����
��s� :���� are stable.

In the next theorem, we use the notation

��G������s� ª � �

��
G���	

�=��
�s� �11�

to denote the gradient vector of G evaluated at ��.

THEOREM 4.2. Assume the following: (i) �̂M is a strongly consis-
tent NLS estimate of ��. (ii) For a given compact parameter set �,
the model set G��� is uniformly stable. (iii) G��� is smooth in �.
(iv) The true parameter �� is in the interior of �. (v) Frequency
points ��m ;m=1, . . . ,M� are distributed uniformly over a fre-
quency range ��� , �̄� such that

lim
M→


�M���� = ����� �12�

where ����� is a positive definite matrix and

�M���� ª
�

m=1

M

Re���G������j�m���G������j�m���

M
�13�

Then the estimate �̂M is asymptotically normal with mean �� and
covariance matrix W����.

�̂M→dN���,W�����, as M → 
 �14�

where →d denotes “converges in distribution” and

W���� ª
�2�−1����

M
�15�

The proof of this theorem is given in Appendix B. The error
covariance matrix W���� in Eq. �15� will play an important role in
the parameter reduction step.

Remark 4.1. In most practical applications, a feasible range of
�� can be obtained from a priori knowledge of the plant such as its
geometrical dimensions and material properties. Hence, we can
formulate identification problems so that assumptions �ii�–�iv� are
satisfied. Assumption �i� can be verified by Theorem 4.1 as in the
presented first-order example. However, for general structures, it
may be hard to verify the conditions. For a given parameterization
G���, assumption �v� can be approximately verified by checking
the positivity of �M at an estimate of ��. If �M cannot be positive
definite, this implies that the model structure is not sound, and
therefore, has to be modified.

Remark 4.2. The Fisher information matrix I���� �16� of the
model �5� can be easily computed by

I���� =
M�M����

�2

By the Cramér–Rao theorem �16,17�, the covariance matrix of any

unbiased estimator �̂ is lower bounded by the Cramér–Rao lower
bound �CRLB� or the inverse of the Fisher information matrix
I����.

E���̂ − �����̂ − ���T� � I����−1 =
�2�M

−1����
M

�16�

Notice that this CRLB approaches to W���� as M increases.
¯
Remark 4.3. The choice of ��� ,�� can significantly affect the

MARCH 2010, Vol. 132 / 021002-3
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rror covariance matrix W. We want to select ��� , �̄� to minimize
he “size” of the covariance matrix W. The optimization is usually
onsidered in terms of the determinant or the trace of W or I �see
ore details in Ref. �17��. In general, ��� , �̄� should contain all the

ignificant modes of the dynamical system.

Parameter Reduction
So far, we have derived the asymptotic error covariance matrix

���� of the NLS estimate �̂ 1 for a single true system G���� with
ingle FRF data. In this section, by considering multiple true sys-
ems G���

��, �=1,2 , . . . with the same model structure and a cor-
esponding set of NLS estimates and error covariances, we will
eparameterize the set with a fewer number of uncorrelated pa-
ameters. This step is called parameter reduction. Such multiple
rue systems represent dynamics variation caused by manufactur-
ng tolerance, change in operating points, and time-varying nature
f the plant.

For the �th dynamical system, we denote the true parameter by

�
� and its NLS estimate based on the kth FRF data by �̂�k. Then,
he estimation error is

��k ª �̂�k − ��
�, � = 1,2, . . . , k = 1,2, . . . �17�

y Theorem 4.2, for a fixed �, ���k� is a random process with an
symptotic normal distribution as M→
.

��k→dN�0,W��, W� ª W���
�� =

�2�−1���
��

M
�18�

ew samples from Eq. �18� for three true parameter vectors ��
� are

llustrated in Fig. 2. For each ��
�, there is an asymptotic normal

istribution of its NLS estimates.
Given a finite number of NLS estimates

��̂�k � Rp; � = 1, . . . ,L, k = 1, . . . ,K� �19�

here p is the number of parameters, and the �th asymptotic error
ovariances

�W�; � = 1, . . . ,L� �20�

he parameter reduction problem is to find a set

1 ˆ M

N (0, W1)

θ⋆
2

θ⋆
1

θ̂11

θ̂21

ǫ̂11

ǫ̂21

Fig. 2 Three samples of ��
� are dis

probability density function for ��
�.

asymptotic normal distribution of its
to approximate confidence regions w
Hereafter, we omit the superscript M of � for simplicity.
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�� ª �̄ + V
; 
 � Rq, 

�i�
 � 1, i = 1, . . . ,q� �21�

with q	 p or equivalently �̄�Rp and V�Rp�q, so that the set
approximates all the given estimates in Eq. �19� in some sense.
Next, we will propose two parameter reduction techniques; one is
based on PCA and the other uses a BMI.

5.1 Parameter Reduction Via PCA. PCA can reduce the di-
mensionality of an empirical data set of correlated variables. The
eigenvectors of the covariance matrix of the data are the principal
components. These vectors form a basis often called the
Karhunen–Loeve transform �KLT� and decorrelate the data in
their new coordinates. By observing the associated variance lev-
els, most important principal components can be chosen to repre-
sent the original data set.

However, direct blind application of PCA or KLT to parameter
reduction can be problematic. We should decide on the threshold
of the variance level of the estimates for reduction by PCA. But
how can we say if a certain level of variance is negligible? One
could choose the threshold level based on the noise level, and this
is the approach that we take.

In our problem, the data set contains hidden features of a manu-
facturing process, which can be represented in terms of a small
number of variables and the NLS estimation error noise. Hence
the objective of this subsection is to provide a theoretically sound
PCA like algorithm, which removes the noise components first
and then apply PCA to possibly reduce the dimensionality of the
original variables. In this subsection, the assumption on the pro-
cess of generating the true parameters ��

�, �=1,2 , . . . is as follows.
ASSUMPTION. The true parameters ��

�, �=1,2 , . . . are generated
by means of a stationary random process �
���Rq with zero
mean E��
��=0 2 and some covariance E��
�
�

T�=� 3 as

��
� = �̄ + V
�, � = 1,2, . . . �22�

where �̄�Rp, V�Rp�q, and q�Z+ are unknown and to be
determined.

Under this assumption, we will explain how to obtain the un-

2E� is the expectation operator over �.
3The covariance matrix �=E��
�
�

T� is a user’s choice. An example of a random
process �
�� that appears in robust control applications is the uniform distribution,
with each vector element 
�i�, i=1, . . . ,q, having the probability density function
f and the covariance matrix � as f =1 /2, 
�i�� �−1,1�, �= I /3.

(0, W2)

N (0, W3)

θ⋆
3

θ̂31

θ̂32

θ̂33

ǫ̂31

ǫ̂32
ǫ̂33

uted in the square support of the
r each sample of ��

�, there is an
S estimates. Ellipsoids correspond
some probability.
N

trib
Fo
NL
ith

�i� 
�i� q
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nown parameters from the estimates and covariances for the case
f an infinite number of samples ��=
 , k=
� and for the case
f a finite number of samples ��	
 , k	
�.

5.1.1 The Case of an Infinite Number of Samples. Although an
nfinite number of samples is impossible in practice, the following
heorem justifies the parameter reduction method, which will be
roposed for finite sample cases later.

THEOREM 5.1. In the case of infinite samples, the unknown pa-

ameters �̄, q, and V are obtained by

�̄ = E�Ek��̂�k� = lim
L,K→


1

L

1

K�
�=1

L

�
k=1

K

�̂�k �23�

q = rank�P − W� �24�

V = U�: ,1:q���1:q,1:q�1/2�−1/2 � Rp�q �25�

here U�: ,1 :q� is a matrix consisting of the first q columns of U,
�1:q ,1 :q� is a matrix consisting of the first q rows and first q
olumns of �, and �1/2 denotes a matrix square root of a positive
efinite matrix � and

P ª E�Ek���̂�k − �̄���̂�k − �̄�T�

W ª E��W��

e will prove this theorem. Due to Eq. �22�, the estimation error
17� can be written as

��k = �̂�k − ��̄ + V
�� �26�

he nominal parameter �̄�Rp in Eq. �23� can be obtained by
veraging both sides of Eq. �26� by letting M go to infinity, and by
sing assumptions E��
��=0 and Ek���k�=0.

For the nominal parameter vector �̄, the error covariance matrix
is, as M goes to infinity in Eq. �18�

P = E�Ek��V
� + ��k��V
� + ��k�T� = E���V
���V
��T�

+ E�Ek���k��k
T � = V�VT + W �27�

ere, we have used Ek���k�=0 and Ek���k��k
T �=W�. By taking the

ingular value decomposition �SVD� of the matrix P−W,

V�VT = P − W = U�UT �28�

e can determine the reduced number of parameters q as

q = rank � = rank�P − W� �29�

nd the matrix V as in Eq. �25�.

5.1.2 The Case of a Finite Number of Samples. In practice, we

ave only a finite number of samples. For sample sets ��̂�k :�

1, . . . ,L , k=1, . . . ,K� and �W� :�=1, . . . ,L�, the matrices �̄, P,
nd W in Theorem 5.1 can be approximated, respectively, by

�̄s
ª

1

L

1

K�
�=1

L

�
k=1

K

�̂�k �30�

Ps
ª

1

LK − 1�
�=1

L

�
k=1

K

��̂�k − �̄s���̂�k − �̄s�T �31�

Ws
ª

1

L�
�=1

L

W� �32�

n finite sample cases, the reduced number q of parameters must
e determined by truncating relatively small singular values of
s−Ws. Due to Theorem 5.1, the approximations become better as
he numbers of samples L and K increases.
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Remark 5.1. We only consider an affine mapping from 
 to � in
�21�. Such parameterization occurs in many control applications.
However, this “affinity” assumption may be limited for some
manufacturing processes. In this case, our approach can be gener-
alized by a nonlinear version of PCA, called kernel PCA �18�.

5.2 Parameter Reduction Via BMI. In the parameter reduc-
tion method via PCA, we assumed that true parameter vectors are
generated by an affine transformation of a random vector se-
quence. In contrast, in what follows, we will not assume anything
about the process of true parameter vectors. This assumption is
more practical than the one in the previous subsection. Under this
assumption, we will obtain, for the prespecified reduced number
of uncorrelated parameters q, the parameter set �21� based on only
the NLS estimates and their error covariances.

Geometrically, the parameter set �21� is a q-dimensional hyper-
rectangle in Rp �q	 p� and the NLS estimates are points in Rp. To
find a hyperrectangle that passes close to all these points, we take
the following two steps.

Step 1. Find a q-dimensional hyperplane that passes close to all
the NLS estimates.

Step 2. Find a hyperrectangle in the obtained hyperplane so that
the size is minimized while maintaining closeness to all the NLS
estimates.

The minimization of the hyperrectangle size in step 2 is impor-
tant for less conservative robust controller design.

The problem in step 1 can be written mathematically as

min
�opt�Rp,Vopt�Rp�q,
��Rq,�=1,. . .,L

�

subject to �W�
−1/2��̂�k − ��opt + Vopt
����2 	 �

k = 1, . . . ,K, � = 1, . . . ,L �33�

Here, in measuring the “distance” between an NLS estimate and
the hyperplane, we take into account the error covariance matrix,
indicating how much we can trust the estimate. In terms of matrix
inequalities, we can express the inequality constraint in Eq. �33�
for each � and k as

�� ��̂�k − ��opt + Vopt
���T

� W�

	 � 0 �34�

where � denotes entries that follow from symmetry and P�0
means that a symmetric matrix P is positive definite. By gathering
all � and k, this condition is equivalent to

��ILK ��̂ − ��opt + �ILK � Vopt����T

� W
	 � 0 �35�

where � denotes the Kronecker product and

�̂ ª diag��̂11, . . . , �̂1K, . . . , �̂L1, . . . , �̂LK� � RpLK�LK

�opt ª ILK � �opt � RpLK�LK

� ª diag�IK � 
1, . . . ,IK � 
L� � RqLK�LK

W ª diag�IK � W1, . . . ,IK � WL� � RpLK�pLK

This is a BMI with unknowns �, �opt, Vopt, and �. To find a
suboptimal solution via LMIs, we alternate the following two LMI
optimization problems: �i� Fix ��opt ,Vopt�, and solve LMI with
respect to �� ,��. �ii� Fix �, and solve LMI with respect to
�� ,�opt ,Vopt�. The initial points for �opt and Vopt can be, for ex-

ample, the ones corresponding to the sample mean value �̄s in �30�
and a matrix V obtained from its error covariance matrix.

After finding a q-dimensional hyperplane in step 2 to minimize

the “size” of the parameter set �21�� for robust control purpose, as
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ell as to satisfy the constraint 

�i�
�1, we need to adjust the
ominal parameter �opt and the matrix Vopt. The problem is to find
hyperrectangle

H ª �
 ª 
̄ + T�
, 
�
�i�
 � 1, i = 1, . . . ,q� �36�

ith shortest sides �without rotation, i.e., T is a diagonal matrix�
hat contains all the suboptimal solutions �
���=1

L . This problem
as an explicit solution.


̄�i� ª
1

2
� min

�=1,. . .,L

��i� + max

�=1,. . .,L

��i��, i = 1, . . . ,q

T ª diag�max
�



��1� − 
̄�1�
, . . . ,max
�



��q� − 
̄�q�
�

ince �
���=1
L �H, the following relation holds

�� ª �opt + Vopt
�, � = 1, . . . ,L�

��� ª �opt + Vopt
, 
 � H�

=�� ª �̄ + V�
, 
�
�i�
 � 1, i = 1, . . . ,q� �37�

here �̄ª�opt+Vopt
̄ , VªVoptT. In this way, we have obtained
et �21� that approximates all the NLS estimates.

Practical Examples
We illustrate the proposed parameter reduction methods with

wo examples. One is a single-input-single-output �SISO� example
rom a hard disk drive application, and the other is a multiple-
nput-multiple-output �MIMO� example from a machine tool ap-
lication.

6.1 SISO Example. This example was taken from the book
19� �ch. 11�. Consider the following set of true system dynamics:

�G�s� = �
m=1

5

�Gm�����s�: � � �− 0.2,0.2��
�G1�����s� ª

0.64013

s2

�G2�����s� ª
0.912s2 + 0.4574s + 1.433�1 + ��

2
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Fig. 3 The noisy FRF data „dotted lines… and Bode plots
uncertain parameter � „solid lines…. The left two and right
based on PCA and BMI.
s + 0.3592s + 1.433�1 + ��
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�G3�����s� ª
0.7586s2 + 0.9622s + 2.491�1 + ��

s2 + 0.7891s + 2.491�1 + ��

�G4�����s� ª
9.917�1 + ��

s2 + 0.1575s + 9.917�1 + ��

�G5�����s� ª
27.31�1 + ��

s2 + 0.2613s + 27.31�1 + ��

We have considered the following case: For uniformly distributed
�=0, �0.2, we took K=3 noisy FRF data with noise variance
�2=0.01. We will use the parameter reduction technique via PCA
and BMI. By regarding the eight parameters as components of

uncertain �, the NLS estimates ��̂�k�R8� and the approximated
asymptotic error covariances �W�� were obtained. Based on these
estimates and covariances, we reduced the number of uncertain
parameters.

The three largest singular values of Ps−Ws are 0.1881, 0.0790,
and 0.0058. We need to select q in Eq. �29� by neglecting small
singular values. In practical problems with finite samples, one
may need some trial and error to select an appropriate q. Theoret-
ical results in this paper guarantees that as M, L, and K go to
infinity, we are able to recover the true value of q, which is one in
this example.

Here, we selected the number of reduced parameters q=1 and
the performed parameter reduction. In Fig. 3, it is shown the noisy
FRF data �dotted lines� and Bode plots of transfer functions ob-
tained by optimally perturbing one uncertain parameter 
 �solid
lines�. As can be seen in these figures, a model set with one
parameter can capture the FRF data quite well, which indicates
that the original eight parameters were redundant to represent the
uncertain system.

Finally, we compared the two proposed techniques with the
standard PCA without taking into account estimation error cova-
riance matrices. For the case L=K=3, we tried various number M
of frequency gridding and computed the average with over ten
different noise realizations of the norm of nominal estimation er-
ror.

�����
� − �̂�,k

� ���,k�

where �̂�,k
� is a point in the reduced parameter set, which is closest

to the NLS estimate �̂�,k, and �m�,k��,k is a matrix whose �� ,k�
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f transfer functions obtained by optimally perturbing one
figures, respectively, correspond to parameter reduction
(

o
two
entry is m�,k. Table 1 shows the improvement in percentage of the
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roposed methods over the standard PCA without considering es-
imation error covariance matrices W. As can be seen in the table,
oth of the proposed methods outperform the standard PCA
round 10% in average, even though this is not theoretically guar-
nteed. In fact, through a number of simulations, we found that
CA with W almost always perform better than PCA without W,
hile the performance of BMI varies under different conditions

uch as initial points, number of samples, and different noise re-
lizations.

6.2 MIMO Example. In this example, the FRF data for a
achine tool with a ball screw drive are used. The system has two

nputs and two outputs. This system can be regarded as a simple
ass-spring-damper system. However, the system parameters

hange depending on the mass �or table� location over the possi-
ly long ball screw. This is illustrated in Fig. 4, where FRF data
dotted lines� were taken at three different locations of the mass.

From a priori knowledge about the plant, we assumed the
odel structure as

Table 1 Nominal error improvement in percentage

70 80 90 100

CA with W 9.07 7.99 11.4 11.8
MI 11.5 17.3 18.0 10.4
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Fig. 4 The noisy FRF data „dotted lines…, and Bode plots o
tain parameter vector � „solid lines…. The first resonance mo

for simplicity.
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�G�����s� ª
�1

s2�M1�s� M2�s�
M2�s� M3�s� 	

M1�s� ª K1
s2 + 2�4�5s + �5

2

s2 + 2�2�3s + �3
2

M2�s� ª
K2

s2 + 2�2�3s + �3
2 ·

− s + �8

s + �8

M3�s� ª K3
s2 + 2�6�7s + �7

2

s2 + 2�2�3s + �3
2 ·

− s + �8

s + �8

Here, the first-order term in M2 and M3 can be interpreted as the
Padé approximation of a time delay and Ki, i=1,2 ,3 are fixed
constants: K1=0.001, K2=0.0004, K3=0.0005. There are
eight parameters �ª ��1 , . . . ,�8�T for NLS optimization.

In this example, we used the parameter reduction method based
on BMI. When we applied the method to the FRF data, we figured
out by trial and error that two parameters are sufficient to repre-
sent the main characteristics of the data. In fact, this parameter
reduction into two parameters did not deteriorate the FRF fitting at
all in this example. Therefore, we set q=2.

The frequency responses of three models in the model set with
reduced number of parameters are shown in Fig. 4 as solid lines
with experimental FRF data as dotted lines. As can be seen in the
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gures, the model set captures main features of the dynamic re-
ponses of the perturbed plant. This model set will be useful in
esigning, e.g., a gain-scheduling controller �20,21�.

Conclusions
In this paper, we have proposed two parameter reduction tech-

iques for robust control. The techniques have been developed
ased on asymptotic properties of nonlinear least-squares esti-
ates, that are strong consistency and asymptotic normality. We

ave utilized the principal component analysis in one technique
nd optimization involving a bilinear matrix inequality in the
ther to detect the correlation of original parameters.

The essential necessary assumption in this paper is that we
now the structure of the true system, which is not practical in
ome applications. Important future work is automatic detection
f the structure of the true system from the combination of a priori
nformation and experimental frequency response function data.
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ppendix A: A Gradient Computation
Here, we provide a formula to compute the gradient of a trans-

er function G��� with respect to a parameter vector ��Rp. For
enerality, the function G��� is assumed to be represented in a
inear fractional transformation �LFT� form:

�G���� ª M22 + M21�����I − M11�����−1M12 �A1�

We omitted the argument s for simplicity.� Here, the matrix M is
artitioned with appropriate dimensions as

M�s� = �M11�s� M12�s�
M21�s� M22�s� 	 �A2�

For a given set of parameters ���i� : i�I� , Iª �1, . . . , p�,
onsider a matrix �����Rw�w having the following structure,
hich is linear with respect to parameters ��i�:

���� = �
i�I

��i�Ei �A3�

or some matrix Ei�Rw�w.
Now, we will prove that, for the transfer function G��� in Eq.

A1� with ���� in Eq. �A3�, the ith entry of �G��� can be com-
uted as

��G����i = M21�I − ����M11�−1Ei�I − M11�����−1M12 �A4�
he formula �A4� with an LFT format is found to be an efficient
ay to obtain gradients with respect to � for calculating �M in Eq.

13�.
The transfer function G��� is given by

G��� = M22 + M21�
i�I

��i�Ei�I − M11�
i�I

��i�Ei	−1
M12

he partial derivative of G��� with respect to ��i� is obtained as
ollows:

��G����i = M21Ei�I − M11�����−1M12 + M21����
�

��i
�I

− M11�����−1M12 = M21Ei�I − M11�����−1M12

+ M21�����I − M11�����−1 � �M11Ei��I
−1 −1
− M11����� M12 = M21�I − ����M11� Ei�I

21002-8 / Vol. 132, MARCH 2010
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− M11�����−1M12

Appendix B: Proof of THEOREM 4.2

To prove THEOREM 4.2, we first review the known result in Ref.
�22�, on asymptotic normality of NLS estimates. Then, we apply
this result to our problem formulation.

B.1 A Result in Ref. [22]. Consider a general NLS optimiza-
tion problem to find a true parameter ����:

�̂N
ª arg min

���
�
n=1

N

�yn − fn����2 �B1�

where ynª fn����+en�R and fn :�→R are given and en

�N�0,�2� is a real random process with a normal distribution.
For a functional fn, we denote its gradient and the Hessian by
�fn :�→Rp and �2fn :�→Rp�p, respectively. In addition, let

�̃N :��R→Rp�p be an operator defined by

�̃N��,�N� ª
1

�N
�
n=1

N

�fn��� � fn���T �B2�

where ��N�N=1

 is a positive sequence that satisfies

lim
N→


�N = 
 . �B3�

The following result �22� is available for asymptotic normality
of NLS estimates.

THEOREM B.1. (Theorem 5 in Ref. [22]). Let �̂N be a strongly
consistent least-squares estimate of ��. Under the regularity con-
ditions A1–A5 below, we have

��N��̂N − ���→dN�0,�2�̃−1� �B4�

where �̃ª limN→
 �̃N��� ,�N�.

B.2 Regularity Conditions. A1. �fn��� and �2fn��� exist for
all � in the neighborhood of ��, which is in the interior of �.
There exists ��N�N=1


 satisfying �44� and

�̃N���,�N� → �̃ as N → 
 �B5�

where �̃ is positive definite.
A2. As N goes to infinity

max
1�n�N

1

�N
� fn����T�̃−1 � fn���� → 0

A3. As N goes to infinity and ��−���→0,

�̃N��,�N��̃N
−1���,�N�

converges to the identity matrix uniformly.
A4. There exists a ��0 such that, for any �j ,k�-entry of the

Hessian �2fn���, denoted by ��2fn���� j,k

lim sup
N→


1

�N
�
n=1

N

sup
��B�����

���2fn���� j,k�2 	 
 �B6�

where B�����ª ���� : ��−������ is a �-neighborhood of ��.
A5. Take � that satisfies Eq. �47�. If for a pair �j ,k�, the follow-

ing holds:

�
n=1




sup
��−�����


��2fn���� j,k
2 = 
 �B7�
then there exists a K, independent of n, such that
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sup
s�t

s,t�B�����


��2fn�s� − �2fn�t�� j,k

�s − t�

� K sup
��B�����


��2fn���� j,k


�B8�

or all n.

B.3 Reducing our Problem to the Form in Eq. (B1). Since
he formulation in Eqs. �5� and �7� contains complex numbers by
ividing the square term into real and imaginary parts, we can
ewrite the cost function in Eq. �7� as

�
m=1

M

�Re�Ĝm� − Re��G�����j�m���2 + �
m=1

M

�Im�Ĝm� − Im��G����

��j�m���2

y comparing this equation with Eq. �B1�, we define Nª2M and
or m=1, . . . ,M

yn ª�Re�Ĝm� if n = 2m − 1

Im�Ĝm� if n = 2m
�

fn��� ª �Re��G�����j�m�� if n = 2m − 1

Im��G�����j�m�� if n = 2m
� �B9�

B.4 Checking the Regularity Conditions in our Problem.
n what follows, we verify the aforementioned regularity condi-
ions A1–A5 for the function fn��� in Eq. �B9�.

A1. Let �N=N /2. Then

�̃N���,�N� =
2

N�
n=1

N

�fn���� � fn����T = �M����

hich due to the assumption �12�, converges to ����� that is posi-
ive definite as N �or M� goes to infinity.

A2. Since �N satisfies limN→
 �N−1 /�N=1, it can be shown �see
ef. �22�� that A2 is implied by A1.
A3. We have

��̃N��,�N��̃N
−1���,�N� − I� � ��̃N��,�N� − �̃N���,�N����̃N

−1���,�N��

By using the smoothness assumption of G, the series expansion
round �=�� gives us

��̃N��,�N� − �̃N���,�N�� � KN�� − ��� + O��� − ���2�

here KN is bounded. Therefore, for any ��0, there exist a posi-

ive integer N̄ and a neighborhood of �� such that ��̃N
−1��� ,�N�� is

ounded by some constant for all N� N̄ and

��̃N��,�N��̃N
−1���,�N� − I� 	 �, ∀ N � N̄

A4. For each �j ,k�, we have, as M goes to infinity

1

�N
�
n=1

N

sup
��B�����

���2fn���� j,k�2

=
1

M �
m=1

M

� sup
��B�����

���2 Re Gm���� j,k�2

+ sup
��B�����

���2 Im Gm���� j,k�2�,

→�
��

�̄

� sup
��B�����

���2 Re�G�����j��� j,k�2

+ sup
�

���2 Im�G�����j��� j,k�2�d�

��B��� �
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Since the function G is smooth around ��, and since the integral
is taken within a finite interval, the last term becomes finite for
some small ��0.

A5. Without loss of generality, we assume that

sup
��B�����


��2fn���� j,k
 � 0, ∀ n

In fact, if sup��B�����
��2fn���� j,k
=0 for some n, then the con-
dition �49� holds irrespective of the choice of K. Under this as-
sumption, since the frequency range ��� , �̄� is a closed set and
since the functions sup��B�����
��2 Re G���� j,k�j��
 and
sup��B�����
��2 Im G���� j,k�j��
 are continuous with respect to �,
there exists a constant ��0 satisfying

inf
n

sup
��B�����


��2fn���� j,k
 � � �B10�

Since ��3G���� 4 is uniformly stable over ���, we have


��3fn����i,j,k
 � K1 ª sup
���

���3G����i,j,k�


where � · �
 denotes the H
 norm of a stable transfer function.
Here, K1 is finite due to the compactness of �. Thus, ��2fn���� j,k
satisfies the global Lipschitz condition for all s , t�� such that

sup
s�t

s,t�B�����


��2fn�s� − �2fn�t�� j,k

�s − t�

� K1

We then select K by

K ª

K1

inf
n

sup
��B�����


��2fn���� j,k


which is independent of n and positive due to Eq. �B10�. From
this equation, Eq. �B8� is obtained. �We remark that, in our prob-
lem formulation, Eq. �B8� holds even without the condition Eq.
�B7�.�
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