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Environmental Monitoring Using Autonomous Aquatic
Robots: Sampling Algorithms and Experiments

Mahdi Jadaliha and Jongeun Choi

Abstract— This brief presents a practical solution to the
problem of monitoring an environmental process in a large
region by a small number of robotic sensors. Optimal sampling
strategies are developed, taking into account the quality of the
estimated environmental field and the lifetime of the sensors. We
also present experimental results for monitoring a temperature
field of an outdoor swimming pool sampled by an autonomous
aquatic surface robot. Simulation and experimental results are
provided to validate the proposed scheme.

Index Terms— Environmental monitoring, Kalman filter (KF),
mobile sensor networks, sampling algorithms.

I. INTRODUCTION

MOBILE sensor networks can be greatly exploited to
monitor environmental variables such as temperature,

pH, salinity, toxins, and chemical plumes. Significant advances
have been made in the area of mobile sensor networks and
their applications to environmental sciences [1]–[8]. Decen-
tralized environmental modeling by mobile sensor networks
was presented in [1] in which control laws were developed
for mobile sensors to maximize their sensory information.
Planning of continuous paths for mobile sensors to reduce
uncertainty in the long-term forecast was addressed in [2]. The
space-time Kalman filter (KF) was proposed in [9] and utilized
in [3] to model the environmental field and design distributed
swarm intelligence for robotic sensors. A tradeoff between
the amount of information contained in the measurements
and the energy costs of acquiring the measurements was
formulated in [8]. Successful implementation of optimal ocean
sampling by mobile sensor networks was reported in [6]. In
[7], networked unmanned autonomous aquatic surface vessels
for environmental monitoring were designed and tested.

In modeling a time-varying environmental scalar field (or a
spatiotemporal process), a finite set of basis functions is often
used [1], [3], [4], [9] so that a scalar value μ(ν, t) at position
ν and time t can be represented by

μ(ν, t) =
nx∑

j=1

ψ j (ν)x j (t) = ψT (ν)x(t) (1)
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where {ψ j (ν)} is a finite set of basis functions and x(t) is a
time-varying coefficient vector, which is modeled by a linear
time-invariant (LTI) system driven by a stochastic input w1

dx(t)

dt
= Ax(t)+w1(t). (2)

In the absence of a good dynamical model of x(t), often an
integrator is chosen for each coefficient for the stochastic noise
input [8].

In contrast to [1], [3], and [4], when a small number
of mobile sensing robots monitor a possibly unstable envi-
ronmental process in a large surveillance region, several
important problems arise. One of them is how to design a
sampling strategy for robotic sensors such that a good quality
of the estimation is always maintained. On the other hand,
the lifetime of the robotic sensor network has to be maxi-
mized for this resource-constrained scenario. Motivated by the
aforementioned issues, this brief presents a practical solution
to the environmental monitoring problem in a large region
by a small number of robotic sensors and its experimental
validation.

The contributions of this brief are as follows. We employ
a KF for the downsampled environmental process with the
objective of dynamic coverage of the surveillance region by
a small number of robots in order to use the cumulative
measurements over a time period. We formulate optimization
problems for prediction algorithms to improve the quality of
the estimation of a time-varying scalar field as well as the
lifetime of a network of robotic mobile sensors due to the
mobility cost. Using the downsampled system with periodic
sampling, we also provide a way to solve the formulated
problems offline for the infinite horizon. From the formulated
optimization problem, we show that there is a tradeoff between
the quality of the estimation and the lifetime of the robotic
sensors due to the mobility cost.

The rest of this brief is organized as follows. In Section II,
we introduce a spatiotemporal process using a network of
radial basis functions whose coefficients follow a continuous-
time linear system. A downsampled system is formulated for
a small number of robotic sensors in Section III. A KF of the
downsampled system and conditions for the discrete algebraic
Riccati equation (DARE) are discussed in Section IV. Optimal
sampling strategies are developed in Section V. Finally, in
Section VI, we present experimental results for monitoring
a temperature field of an outdoor swimming pool by an
autonomous aquatic surface robot.

The notation throughout this brief is standard. Let R,R≥0,
and Z>0 denote, respectively, the sets of real numbers,
nonnegative real numbers, and positive integers. The posi-
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tive definiteness (positive semidefiniteness, respectively) of
a matrix M is denoted by M � 0 (M � 0, respectively).
E denotes the expectation operator. Let ‖x‖ denote the stan-
dard Euclidean norm (or 2-norm) of a vector x . A block
diagonal matrix whose diagonal entries are given by a set
of matrices (M1, . . . ,Mn) starting from the top left corner is
denoted by diag(M1, . . . ,Mn). For column vectors va ∈ R

a ,
vb ∈ R

b, and vc ∈ R
c, col(va, vb, vc) := [

vT
a vT

b vT
c

]T ∈
R

a+b+c stacks all vectors to create one column vector. In ∈
R

n×n denotes an n×n identity matrix. The square-root factor-
ization for a matrix O � 0 is defined by O = O1/2 O1/2T

. A
matrix will be called Schur if all of its eigenvalues lie strictly
inside the unit disk in the complex plane. Other notation will
be explained in due course.

II. DYNAMICAL ENVIRONMENTAL SCALAR FIELDS

Let Q ∈ R
2 be the surveillance region of interest. Suppose

that the scalar field μ(ν, t) at position ν ∈ Q and time t ∈ R

is generated by a network of radial basis functions, which is
given by (1) and (2), where ψT (ν) ∈ R

1×nx and x(t) ∈ R
nx ×1.

The collection of Gaussian radial basis functions
{ψ j (ν) | j = 1, . . . , nx } in ψT (ν) is given by

ψ1(ν) = 1,

ψ j (ν) = 1

β j
exp

(
−‖ν − ξ j‖2

σ 2
j

)
, ∀ j ∈ {2, . . . , nx } (3)

where σ j is the width of the Gaussian basis function and β j

is a normalizing constant. ψ1 is associated with a global state,
while other basis functions are related to the local states. The
center locations, i.e., {ξ j }, are assumed to be known or need
to be estimated a priori.

Modeling an environmental process (i.e., the coefficients) by
an LTI system as in (1) and (2) could be justified by linearizing
a nonlinear system around an operating point [1], [3], [9].

For the model in (1), the selection of the correct number
of basis functions is important. Using more radial basis
functions may provide better resolution. However, it demands
higher computational power and more modes for robots to
observe. More importantly, overfitting could happen with a
large number of basis functions.

The Akaike information criterion can be used to determine
the optimal number of parameters a priori, correctly avoiding
overfitting [10]. Subset selection is another technique that can
improve generalization capability and avoid overfitting [11].

We assume that the dynamics of the coefficient vector x(t) ∈
R

nx can be modeled by a continuous-time LTI system under a
stochastic noise input. In particular, the linear system of x(t)
is modeled by (2), where w1(t) ∈ R

nx denotes a continuous-
time Gaussian white noise process with the intensity Vu ∈
R

nx ×nx . Note that the continuous-time LTI system in (2) has
been considered to take into account the effect of the sampling
time on the quality of the estimation and the lifetime of the
robotic sensors.

We assume that ny robotic sensors are distributed over Q.
Let qi (t) ∈ Q be the position of the i th sensing agent at time
t ∈ R≥0. Each robotic sensor will sample a noise-corrupted

scalar value of interest. Robotic sensors will sample the
process in (1) and (2) providing sampled-data measurements

y(tk) :=
[
ψT (q1(tk)), ψ

T (q2(tk)), . . . , ψ
T (qny (tk))

]T

×x(tk)+w2(tk) ∈ R
ny (4)

where {qi (tk)|i = 1, . . . , ny} are the sampling positions at tk .
w2(tk) ∈ R

ny denotes a discrete-time Gaussian white noise
process with the covariance matrix V2(tk) ∈ R

ny×ny .

III. DOWNSAMPLED SYSTEM

Because of sampling with a small number of robots over a
large region, we estimate the field using a set of cumulatively
collected N × ny measurements at every N th sampling time.
To this end, we consider a downsampled system with the
accumulated sampled data measurements over a time period,
which is defined by

yi := col(y(Ni + 1), y(Ni + 2), . . . , y(Ni + N)) ∈ R
Nny

where i ∈ Z>0. In general, we may assume that the sampling
time intervals by robotic sensors hk := tk+1 − tk are not
uniform. Define the state transition matrix by �(k, j) :=
eA

∑k−1
l= j hl ,∀k ≥ j . Using the fact that

x(k + N) = �(k + N, k)x(k) +
k+N−1∑

j=k

�(k + N, j + 1)u( j),

y(k + �) = C(k + �)�(k + �, k)x(k)

+
k+�−1∑

j=k

C(k + �)�(k + �, j + 1)u( j)+ w(k + �)

where CT (k) := [ψ(q1(tk)) · · ·ψ(qny (tk))]T , and u(k) is a
discrete-time Gaussian white noise process with the following
properties:

E[u(k)] = 0

E[u(k)uT (l)] = δk,l

∫ hk

0
eAτVueAT τdτ =: δk,l V1(k)

where δk,l is a Kronecker delta function given by δk,l = 1
if k = l, otherwise 0. The measurement noise is given by a
discrete-time Gaussian white noise process w(k) := w2(tk)
with

E[w(k)] = 0, E[w(k)wT (l)] = δk,l V2(k).

We obtain the downsampled system with collective mea-
surements

xi+1 = Fi xi + Gi ui , yi = Hi xi + vi (5)

where vi = Di ui +wi and other associated system parameters
are provided in (6), at the bottom of the next page, in terms of
sampled dynamics of (2). Now the processes ui and vi in (5)
are vector-valued zero-mean Gaussian white-noise processes
with the properties

E

[
ui

vi

]
= 0,E

[
ui

vi

] [
uT

j v
T
j

]
= δi, j

[
Qi Si

ST
i Ri

]

where the formulas for {Qi , Si , Ri } are given by

Qi = diag(V1(Ni), V1(Ni + 1), . . . , V1(Ni + N − 1))



JADALIHA AND CHOI: ENVIRONMENTAL MONITORING USING AUTONOMOUS AQUATIC ROBOTS 901

Si = Qi DT
i ,

Ri = Di Qi DT
i + diag(V2(Ni + 1),

V2(Ni + 2), . . . , V2(Ni + N)). (7)

We take the standard assumption [12] on the initial state x0,
which is that x0 is jointly Gaussian with x0 ∼ N (x̄0,�0), and
is uncorrelated with {ui } and {vi }.

IV. KALMAN FILTER

The optimal estimator for this downsampled system in (5)
is the KF [12]. First we introduce the following standard
notations. x̂i| j and ŷi| j are the optimal estimations (or con-
ditional expectations) of xi and yi given by {y0, . . . , y j }. Let
ei := yi − ŷi|i−1 be the innovation process. Let x̃i| j := xi − x̂i| j

be the estimation error. The estimation error covariance is
defined by Pi| j := E[x̃i| j x̃ T

i| j ]. The discrete-time KF iterations
for (5) can be written in the form of predictor updates as

x̂i+1|i = Fi x̂i|i−1 + Ki (yi − Hi x̂i|i−1)

Pi+1|i = Fi Pi|i−1 FT
i + Gi Qi GT

i − Ki Re,i K T
i (8)

where Ki := (Fi Pi|i−1 H T
i + Gi Si )R

−1
e,i , and Re,i := Ri +

Hi Pi|i−1 H T
i , and P0|−1 = �0. Because of the sampled data

measurements for the downsampled system, we have

x̂i|i−1 = E[x(Ni)|y(0), . . . , y(Ni)] =: x̂(Ni |Ni)

Pi|i−1 = E[x(Ni)− x̂(Ni |Ni)][x(Ni) − x̂(Ni |Ni)]T. (9)

Therefore, we use the KF predictor updates in (8) for the
downsampled system to obtain the estimates of x(Ni) and the
estimation error covariance matrix based on the measurements
{y(0), y(1), . . . , y(Ni)} as shown in (9).

We assume that sensing robots are loitering around the
surveillance region over a time period of revolution, which is
equal to the period of the downsampled model. Hence, at the
end of this period, robots will have the new updated prediction
of the field. If we assume that the overall sampling sequence
of intervals [tk, tk+N ], k ∈ Z>0, is periodic over [0,∞),
the downsampled system in (5) becomes an LTI system with
the system parameters of {F,G, H, Q, S, and R}, where
time-invariant {S, R} are obtained by the fact that {w(k)}
is cyclostationary due to the periodic sampling strategy, i.e.,

V2(k) = V2(k+N). In this case, the Riccati recursion from (8)
can be written as

Pi+1|i = F Pi|i−1 FT + G QGT − (F Pi|i−1 H T + GS)

×(R + H Pi|i−1 H T )−1(F Pi|i−1 H T + GS)T. (10)

The associated DARE is given by

P = F P FT + G QGT − (F P H T + GS)

×(R + H P H T )−1(F P H T + GS)T. (11)

The associated Lyapunov equation is given by

FT
p O Fp − O + H T (R + H P H T )−1 H = 0 (12)

where Fp := F − K H and K := (F P H T + GS)(R +
H P H T )−1.

It can be shown [12, Th. E.5.1] that {F, H } is detectable
and {Fs,G Qs1/2}, where Fs := F − GS R−1 H and Qs :=
Q − S R−1 ST is controllable on the unit circle if and only
if the DARE in (11) has a stabilizing solution P for which
Fp := F − K H is stable and any such stabilizing solution is
unique and positive semidefinite. In addition, under the same
condition of a detectable pair {F, H } and a controllable pair
{Fs,G Qs1/2} on the unit circle, it can be also shown [12, Th.
E.6.1] that {Fs,G Qs1/2} is stabilizable (i.e., controllable on
and outside the unit circle) if and only if the DARE has a
unique positive semidefinite solution, which is given by the
maximal (and stabilizing) solution. The following sufficient
convergence conditions [12, Th. 14.7.1] are useful to ensure
that the covariance matrix Pi|i−1 of the Riccati recursion
in (10) converges to the solution P of the DARE in (11).

Consider the Riccati recursion in (10) with a detectable
pair {F, H } and a controllable pair {Fs,G Qs1/2} on the unit
circle. Let P denote the unique stabilizing solution of the
DARE in (11) and O � 0 be the unique solution of the
Lyapunov equation in (12). Then, if the initial condition �0 is
a symmetric matrix satisfying I + O1/2T

(�0 − P)O1/2 � 0,
Pi|i−1 converges exponentially to P .

On the other hand, convergence with an indefinite �0
requires {F, H } to be detectable and {Fs,G Qs1/2} stabilizable
[12, Th. 14.7.2].

Note that this convergence result holds even though F is
unstable as long as the sufficient convergence conditions are
satisfied. The sampling strategy of robotic sensors will be

xi : = x(Ni) ∈ R
nx

ui : = col(u(Ni), u(Ni + 1), . . . , u(Ni + N − 1)) ∈ R
Nnx

yi : = col(y(Ni + 1), y(Ni + 2), . . . , y(Ni + N)) ∈ R
Nny

Fi : = �(Ni + N, Ni) ∈ R
nx ×nx

Gi : = [�(Ni + N, Ni + 1)�(Ni + N, Ni + 2) , . . . , �(Ni + N, Ni + N)] ∈ R
nx ×Nnx

Hi : = col(C(Ni + 1)�(Ni + 1, Ni),C(Ni + 2)�(Ni + 2, Ni), . . . ,C(Ni + N)�(Ni + N, Ni)) ∈ R
Nny ×nx

Di : =

⎡

⎢⎢⎣

C(Ni + 1) 0 0
C(Ni + 2)�(Ni + 2, Ni + 1) C(Ni + 2) 0

...
. . .

C(Ni + N)�(Ni + N, Ni + 1) C(Ni + N)

⎤

⎥⎥⎦ ∈ R
Nny ×Nnx

wi : = col(w(Ni + 1), w(Ni + 2), . . . , w(Ni + N)) ∈ R
Nny

(6)
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designed taking into account the aforementioned conditions
for the DARE and its convergent solution.

V. OPTIMAL SAMPLING STRATEGIES

Let r = col(r1, . . . , rN ) ∈ R
2ny N denote a sampling

position vector whose position entries are associated with the
sampling times tNi+1, . . . , tNi+N over a period. For simplicity,
we assume that the sampling time hk = h is fixed. The sam-
pling position vector r also serves as a collection of waypoints
which the robotic agents track and take measurements at over
a period. Note that the downsampled system parameters can
be written as functions of r

{F,G, H (r), Q, S(r), R(r)}.
Let Ek and Lk(r) denote, respectively, the energy content

and the energy power needed to complete the sampling for a
period by the kth robotic sensor. Then the lifetime of the kth
robotic sensor is given by

Tk(r) = Ek

Lk(r)
. (13)

In optimizing the sampling strategy, we consider mixed
optimization for minimizing two conflicting cost functions
such as the estimation error variances at target positions in
q target and another one for maximizing the lifetime of the
robotic sensor network. Here, the set of target points is denoted
by q target := {q target

j | j = 1, . . . , nT }. As a result, the sampling
strategy will minimize the estimation error variances at target
points and the movement cost simultaneously.

A. Greedy Policy Over a Finite Time Horizon

For a given set {hk = h|k ∈ Z>0} and hyperparameters
for the scalar field modeled in (1), we consider the following
greedy policy which minimizes the cost function during the
next finite time horizon:

r [i ] = arg min
r∈DS

J i+1(r) (14)

where r [1], . . . , r [i ] are sampling position vectors for periods
1, . . . , i . DS is the set of all possible r in which {F, H (r)}
is detectable and {Fs(r),G Q(r)s1/2} is stabilizable. The cost
function at iteration i + 1 is given by

J i+1(r) = λJ i+1
1 (r)+ (1 − λ)J i+1

2 (r) (15)

where λ ∈ [0, 1] is the weight factor. J i+1
1 (r) is the estimation

performance cost function defined by the averaged estimation
error variances at target positions at period i + 1 using
observations up to period i + 1. From (1) and (9), we obtain

J i+1
1 (r) = 1

nT

∑

ν∈q target

E

[
(μ(ν)− μ̂(ν))2

]

= 1

nT

∑

ν∈q target

ψT (ν)Pi+1|i (r)ψ(ν)

where nT is the number of target points in q target. Pi+1|i is
given by the Riccati recursion in (10) as a function of r and
Pi|i−1. J i+1

2 (r) denotes the traveling energy cost function of

the sensor network. Using (13), we choose the average of the
inverted lifetime over robotic sensors

J i+1
2 (r) := 1

ny

ny∑

k=1

1

Tk(r)
= 1

ny

ny∑

k=1

Lk(r)

Ek
. (16)

For a case where the energy power is proportional to the sum
of squares of the traveled distances, we have the following
cost function for a single robot:

J i+1
2 (r) := α

(
‖rN − r1‖2 + ∑N−1

k=1 ‖rk − rk+1‖2

Nh

)
(17)

where Nh is the total sampling time for a period and α is
an appropriate constant. The gradient of the cost function can
be used to find a local minimum to the optimization problem
in (14) in each period.

B. Infinite Horizon Optimization

A mixed optimization problem for the infinite horizon can
be also formulated as follows:

ropt = arg min
r∈DS

J∞(r) (18)

where J∞(r) := λJ1(r) + (1 − λ)J2(r) and λ ∈ [0, 1] is
a weighting factor. J1(r) and J2(r) in (18) are defined as
follows:

J1(r) := 1

nT

∑

ν∈q target

ψT (ν)P(r)ψ(ν)

where P(r) is the unique solution of the DARE in (11) for
given r . J2 can be defined similar to (16). For a single robotic
sensor, we may use the same model for J2 as in (17)

J2(r) := α

(
‖rN − r1‖2 + ∑N−1

k=1 ‖rk − rk+1‖2

Nh

)
. (19)

The optimization problem in (18) can be solved using the
following gradient descent algorithm projected over DS:

r [ j + 1] = ProjDS

(
r [ j ] − ε j∇r J∞(r [ j ])) (20)

where ∇r J∞(r [ j ]) denotes the gradient of J∞ at r [ j ] and ε j

is the small step size to update r at iteration j . r [ j + 1] is
the projection of

(
r [ j ] − ε j ∇r J∞(r [ j ])) onto DS in order to

satisfy the conditions for the existence and uniqueness of the
solution to the DARE.

However, the computation of ∇r J∞(r) requires the evalua-
tion of (∂P/∂r), where P is the unique solution of the DARE
in (11) for r ∈ DS. In what follows, we show a way to com-
pute it by solving a series of Lyapunov equations [13], [14].

Since r ∈ DS, the DARE has a unique positive semidefinite
solution P , which is given by the maximal (and stabilizing)
solution. Since the stabilizing solution of the DARE is analytic
[13], P is an infinitely differentiable function of r at any
point for which the DARE admits a stabilizing solution. It can
be shown that we can implicitly differentiate the DARE with
respect to the i th entry of the vector r to obtain the following
Lyapunov equations for all i ∈ {1, . . . , 2ny N} [14]:

Fp P[i] FT
p − P[i] + X + X T = 0 (21)
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TABLE I

ACHIEVED COST FUNCTION VALUES FOR DIFFERENT CASES

Case N h λ J1(celcius2) J−1
2 = T (h)

1 36 5 0.3 0.43588 19.4892

2 36 5 0.5 0.30636 7.4157

3 36 5 0.7 0.27302 5.4634

4 36 10 0.5 0.37857 12.0648

5 36 2.5 0.5 0.29559 5.8864

6 48 5 0.5 0.29412 10.3252

7 24 5 0.5 0.4202 8.4984

where the superscript [i ] denotes the partial derivative with
respect to the i th entry of r . The other parameters in (21) are
as follows:

Fp := F − K H

K := (F P H T + GS)(R + H P H T )−1

X := −Fp P(H T )[i]K T − GS[i] K T + 1

2
K R[i] K T.

Since Fp is Schur (or stable), each Lyapunov equation can be
uniquely solved for P[i].

Therefore, ∇r J∞(r) evaluated at r = r0 can be computed
by the following way.

1) Compute P from the DARE with r = r0.
2) Compute {P[i] | i = 1, . . . , 2ny N} by solving the

Lyapunov equations in (21).
3) Compute ∇r J∞(r) in (20) using (∂P/∂r).

Numerical issues related to the computational solution of
the algebraic matrix Riccati equation are discussed in [15].
In particular, computing ∇r J∞(r) according to the aforemen-
tioned steps has the following computational complexity. For a
fixed number of robots ny and a fixed number of target points
nT , the complexity of the first step is O(n3

x ) + O(n2
x N) +

O(nx N2) + O(N3), the complexity of the second step is
O(n3

x N)+ O(n2
x N3), and, finally, the complexity of third step

is O(n2
x N). Note that this optimization is performed offline.

C. Tradeoff Between Cost Functions

In this section, we discuss some results from the optimiza-
tion presented in (18) using the method we proposed in (20)
and (21). Note that the optimization in (18) is nonconvex.
Hence, the suboptimal solution will be obtained via the
gradient algorithm in (20).

Suboptimal solutions are found under different parameters
such as λ (weighting factor), h (sampling time), and N
(number of samples) for a robotic sensor as seven cases shown
in Table I. We have used a model for J2 defined in (19) with
α = 2s/(m2 · h).

The estimation performance cost J1 and the energy cost
J2 in (18) are conflicting cost functions since robotic sensors
need to sample many different points to improve the quality
of the estimate, which requires a lot of traveling and energy
dissipation. As can be seen throughout cases 1–3, a tradeoff
can be obtained between the conflicting cost functions J1 and
J2, e.g., the achieved value of J1 decreases while that of J2
increases as λ increases.

micro controler

IMU

PC104

HDD battry

motor driver

motor

temerature sensor
         connector

(a)

Hot water outlets

(b)

Fig. 1. (a) Developed robotic sensor. (b) Experimental environment—a
12 × 6 m outdoor swimming pool.

From the results of cases 2, 4, and 5, we see that if
the sampling time h decreases, the averaged estimation error
variance J1 decreases while the energy cost J2 increases. The
effect of different numbers of sampling points for a period is
shown via cases 2, 6, and 7.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present experimental results using a
single aquatic surface robot in an outdoor swimming pool
as shown in Fig. 1. We have built our own aquatic surface
robots equipped with various sensors for localization and
water quality monitoring. The robot is capable of monitoring
the aquatic variables in an autonomous manner while being
remotely supervised by a central station as well.

In the experimental study, we have selected and identified
the system parameters based on a priori knowledge about the
spatiotemporal process and sensor noise characteristics. For
example, A has been chosen such that A = −diag(0, τ−1 I18),
taking into account the time constant τ = 1000 s and placing
an eigenvalue at zero for x1(t) of x(t) in (3) to maintain the
average of the field. The system parameters for the simulation
and experimental results are selected as follows: N = 36, nx =
19, β = col(1, . . . , 1) ∈ R

19×1, σ = col(∞, 2.5, . . . , 2.5) ∈
R

19×1, h = 5, λ = 0.5, V2 = 0.5I36, Vu = 10−3 I19, and
A = −10−3diag(0, I18). The initial value �0 = 2Inx ×nx and
x0 = col(10, 0, . . . , 0) ∈ R

nx have been chosen for the initial
conditions of the KF. In general, the maximum likelihood
estimation using expectation–maximization algorithms can be
used to estimate the unknown system parameters [16]. The
center locations of radial basis functions in the 12 × 6 m
swimming pool are shown by pluses in Fig. 2(a). The target
points in q target have been selected as the same as the center
locations of radial basis functions.

For comparison, we have simulated the temperature field in
the pool using the aforementioned system parameters. For the
simulated data, the estimated temperature and the estimation
error variance by our approach have been shown, respectively,
in Fig. 2(b) and (c). From (1), the estimation error variance
at point q is E

[
(μ(q)− μ̂(q))2

] = ψT (q)Pi+1|i (r)ψ(q).
The counterclockwise (CCW) trajectory of simulated sampling
points, which has been optimized by the proposed approach,
is shown in purple solid lines with white dots for two sensor
agents in Fig. 2(c). The trajectory for both agents starts from
three o’clock. The true field and the estimated field match well
as shown in Fig. 2(a) and (b). It is straightforward to see that
the estimation error variance has been decreased in areas near
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Fig. 2. (a) Simulated true temperature field. The purple pluses represent the
target points and also the centers of the radial basis functions. (b) Estimated
temperature field. (c) Estimation error variance field. The CCW trajectory
of the simulated sampling points is shown in purple solid lines with white
dots. The trajectories for both agents start from three o’clock. The axes show
coordinates along horizontal and vertical directions in meters.

the latest sampling points along the CCW sampling trajectory
shown in Fig. 2(c).

To validate our approach under an experimental setup, we
control the temperature field by turning the hot water pump
on and off. The hot water outlets are shown in Fig. 1(b). We
turned on the hot water pump for a while. After that, the hot
water pump was turned off, and after 6 min the robot collected
36 measurements in a period. The first measurement was taken
at t = 0 s at a location shown as a white star in Fig. 3(b).
The estimated temperature and its error variance at t = 175 s
are shown in Fig. 3(a) and (b), respectively. Sampling points
and the robot trajectory in CCW are shown in white dots and
purple solid lines in Fig. 3(b).

The experimental setup was designed to evaluate the estima-
tion performance of the proposed sampling strategy with one
mobile robot. As can be seen in Fig. 3, there are hot spots
at the left and right sides of the swimming pool. These hot
spots were the result of hot water flux injected by the two hot
water outlets at positions (1, 0) and (11, 0) in the lower-left
and lower-right corners of the swimming pool, which met our
expectation of high temperature around the hot water outlets,
as shown in Fig. 1(b). In addition, the estimation error variance
is higher around the places where the mobile robot did not
collect samples.

VII. CONCLUSION

In this brief, we developed a practical solution to an
environmental monitoring problem in a large region by a small

Fig. 3. (a) Estimated temperature field (in celsius) and (b) its estimation
error variance field (in celsius2) at time t = 175 s. The first measurement
point (shown with a white star) was measured in t = 0 s. The sampling
points and the trajectory in CCW are shown with white dots and purple solid
lines, respectively. The axes show coordinates along horizontal and vertical
directions in meters.

number of robotic sensors. Optimal sampling strategies were
developed to maximize the estimation quality and the lifetime
of the robotic sensors. A tradeoff between these two conflicting
objectives was presented. In addition, the effects of parameters
such as the number of measurements, weighting factors, and
the sampling time were reviewed. Finally, simulation and
experimental results were provided by our aquatic surface
robot in an outdoor swimming pool with controlled hot water
flux. Experimental results were given to validate the proposed
scheme.

Future work will involve taking into account localization
errors for the estimation and implementing the experimental
setup for multiple robots.
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