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Gaussian Process Regression for Sensor Networks
Under Localization Uncertainty

Mahdi Jadaliha, Yunfei Xu, Jongeun Choi, Nicholas S. Johnson, and Weiming Li

Abstract—In this paper, we formulate Gaussian process regres-
sion with observations under the localization uncertainty due to the
resource-constrained sensor networks. In our formulation, effects
of observations, measurement noise, localization uncertainty, and
prior distributions are all correctly incorporated in the posterior
predictive statistics. The analytically intractable posterior predic-
tive statistics are proposed to be approximated by two techniques,
viz., Monte Carlo sampling and Laplace’s method. Such approx-
imation techniques have been carefully tailored to our problems
and their approximation error and complexity are analyzed. Sim-
ulation study demonstrates that the proposed approaches perform
much better than approaches without considering the localization
uncertainty properly. Finally, we have applied the proposed ap-
proaches on the experimentally collected real data from a dye con-
centration field over a section of a river and a temperature field of
an outdoor swimming pool to provide proof of concept tests and
evaluate the proposed schemes in real situations. In both simula-
tion and experimental results, the proposed methods outperform
the quick-and-dirty solutions often used in practice.

Index Terms— Gaussian processes, Monte Carlo methods, re-
gression analysis, sensor networks, Laplace’s methods.

I. INTRODUCTION

R ECENTLY, there has been a growing interest in wireless
sensor networks due to advanced embedded network

technology. Their applications include, but are not limited
to, environment monitoring, building comfort control, traffic
control, manufacturing and plant automation, and surveillance
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systems [1], [2]. Mobility in a sensor network can increase its
sensing coverage both in space and time, and robustness against
uncertainties in environments. Exploitation of mobile sensor
networks has been increased in collecting spatio-temporal data
from the environment [3]–[5].
Gaussian process regression (or Kriging in geostatistics)

has been widely used to draw statistical inference from geo-
statistical and environmental data [6], [7]. Gaussian process
modeling enables us to predict physical values, such as temper-
ature or harmful algae bloom biomass, at any point and time
with a predicted uncertainty level. For example, near-optimal
static sensor placements with a mutual information criterion
in Gaussian processes were proposed in [8], [9]. A distributed
Kriged Kalman filter for spatial estimation based on mobile
sensor networks was developed in [5]. Centralized and dis-
tributed navigation strategies for mobile sensor networks to
move in order to reduce prediction error variances at points of
interest were developed in [10].
Localization in sensor networks is a fundamental problem in

various applications to correctly fuse the spatially collected data
and estimate the process of interest. However, obtaining pre-
cise localization of robotic networks under limited resources is
very challenging [11], [12]. Among the localization schemes,
the range-based approach [13], [14] provides higher precision
as compared to the range-free approach that could be cost-ef-
fective. The global positioning system (GPS) becomes one of
the major absolute positioning systems in robotics and mobile
sensor networks. Most of affordable GPSs slowly update their
measurements and have resolution worse than onemeter. AGPS
is often augmented by the inertial navigation system (INS) for
better resolution [15]. In practice, resource-constrained sensor
network systems are prone to large uncertainty in localization.
Most previous works on Gaussian process regression for mobile
sensor networks [6], [9], [10], [16] have assumed that the exact
sampling positions are available, which is not practical in real
situations.
Therefore, motivated by the aforementioned issues, we con-

sider correct (Bayesian) integration of uncertainties in sampling
positions, and measurements noise for Gaussian process regres-
sion and its computation error and complexity analysis for the
sensor network applications. The overall picture of our work is
similar to the one in [17] in which an extended Kalman filter
(EKF) was used to incorporate robot localization uncertainty
and field parameter uncertainty. However, [17] relies on a para-
metric model, which is a radial basis function network model
and EKF, while our motivation is to use more flexible non-para-
metric approach, viz., Gaussian process regression taking into
account localization uncertainty in a Bayesian framework.

1053-587X/$31.00 © 2012 IEEE
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Fig. 1. The prediction results of applying Gaussian process regression on the true and noisy sampling position are shown. The first, second, and third rows
correspond to the prediction, prediction error variance, and squared empirical error (between predicted and true fields) fields. The first column shows the result of
applying Gaussian process regression on the true sampling positions. Second and third columns show the results of applying Gaussian process regression on the
noisy sampling positions with and noise covariance matrices, respectively. True and noisy sampling positions are shown in circles with
agent indices in the second row.

Gaussian process regression in [18] integrate uncertainty in
the test input position for multiple-step ahead time series fore-
casting. In [18], uncertainty was not considered in the sampling
positions of the training data (or observations).
However, localization uncertainty effect is potentially signifi-

cant. For example, Fig. 1 shows the effect of noisy sampling po-
sitions on the results of Gaussian process regression. Note that
adding noise to the sampling positions considerably increase the
empirical RMS error, shown in the third row of Fig. 1.
A Gaussian approximation to the intractable posterior pre-

dictive statistics obtained in [18] has been utilized for the pre-
dictive control with Gaussian models [19], [20] and Gaussian
process dynamic programming [21]. In general, the length of
the training data is much longer than that of the test point for
sensor network applications, therefore, our problem possibly in-
volves a high dimensional uncertainty vector for the sampling
positions.
Gaussian process prediction with localization uncertainty can

be obtained as a posterior predictive distribution using Bayes’
rule. The main difficulty to this is that it has no analytic closed-
form solution and has to be approximated either through Monte
Carlo sampling [22] or other approximation techniques such
as variational inference [23]. As an important analytical ap-
proximation technique, Laplace’s method has been known to
be useful in many such situations [24], [25]. Different Laplace
approximation techniques have been analyzed in terms of ap-
proximation error and computation complexity [24]–[27].
The contribution of this paper is as follows. First, we for-

mulate Gaussian process regression with observations under
the localization uncertainty due to the resource-constrained

(possibly mobile) sensor networks. Next, approximations have
been obtained for analytically intractable predictive mean, and
predictive variance by using the Monte Carlo sampling and
Laplace’s method. Such approximation methods have been
carefully tailored to our problems. In particular, a modified ver-
sion of the moment generating function (MGF) approximation
[25] has been developed as a part of Laplace’s method to reduce
the computational complexity. In addition, we have analyzed
and compared the approximation error and the complexity
so that one can choose a tradeoff between the performance
requirements and constrained resources for a particular sensor
network application. Another important contribution has been
to provide proof of concept tests and evaluate the proposed
schemes in real situations. We have applied the proposed ap-
proaches on the experimentally collected real data from a dye
concentration field over a section of a river and a temperature
field of an outdoor swimming pool.
The preliminary work of this paper containing only the

Laplace methods along with simulation results was reported in
[28].
The remainder of this paper is organized as follows. In

Section II, we review Gaussian process regression, Monte
Carlo sampling and Laplace’s method briefly. In Section III,
Gaussian process prediction in the presence of the localization
uncertainty has been formulated for a proposed sampling
scheme as a Bayesian inference problem. We first present
the Monte Carlo estimators for the posterior predictive mean
and variance in Section IV. In Section V, using Laplace’s
method, we provide approximations for the posterior predictive
statistics. Section VI compares the computational cost and
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approximation accuracy over the proposed estimators based
on the Mont Carlo sampling and the Laplace’s method. Fi-
nally the simulation and experimental results are provided in
Sections VII and VIII, respectively.
Standard notation will be used throughout the paper. Let ,
, , , , denote, respectively, the sets of real,

non-negative real, positive real, integer, non-negative integer,
and positive integer numbers. denotes the identity matrix
of size ( for an appropriate dimension.) For column vec-
tors , , and ,

stacks all vectors to create one column
vector, and denotes the Euclidean norm (or the vector
2-norm) of . denotes the determinant of a matrix

, and denotes trace of a square matrix . Let
and denote, respectively, the expectation and the vari-
ance of a random vector . A random vector , which
is distributed by a multivariate Gaussian distribution of a mean

and a variance , is denoted by .
We define the first and the second derivative operators on

with respect to a vector as follow.

...
. . .

...

If there exists and , such that the approximation error
satisfies , we say that the error between
and is of order and also write . Other

notation will be explained in due course.

II. PRELIMINARIES

In this section, we review the spatio-temporal Gaussian
process, Monte Carlo sampling and Laplace’s method, which
will be used throughout the paper.

A. Gaussian Process Regression

A Gaussian process defines a distribution over a space of
functions and it is completely specified by its mean function
and covariance function. Let denote
the index vector, where contains the sampling lo-
cation and the sampling time . A
Gaussian process, , is formally defined as below.
Definition 1: AGaussian process [7] is a collection of random

variables, any finite number of which have a joint Gaussian dis-
tribution.
For notational simplicity, we consider a zero-mean Gaussian

process1 . For example, one may
consider a covariance function defined as

(1)

1A Gaussian process with a nonzero-mean can be treated by a change of vari-
ables. Even without a change of variables, this is not a drastic limitation, since
the mean of the posterior process is not confined to zero [7].

where . In general, the mean and the covariance func-
tions of a Gaussian process can be estimated a priori by maxi-
mizing the likelihood function [16].
Suppose, we have noise corrupted observations without lo-

calization error, and . Assume
that , where is an independent and
identically distributed (i.i.d.) white Gaussian noise with vari-
ance . is defined by . The col-
lections of the realizations and the

observations have the Gaussian dis-
tributions

where is the covariance matrix of obtained by
, and is the identity matrix with an

appropriate size. We can predict the value of the Gaussian
process at a point as [7]

(2)

In (2), the predictive mean is

(3)

and the predictive variance is given by

(4)
where is the covariance matrix between and
obtained by , and is
the variance at . (3) and (4) can be obtained from the fact that

(5)

Note that the predictive mean in (3) and its prediction error
variance in (4) require the inversion of the covariance matrix
whose size depends on the number of observations . Hence
a drawback of Gaussian process regression is that its computa-
tional complexity and memory space increase as more measure-
ments are collected, making the method prohibitive for agents
with limited memory and computing power. To overcome this
increase in complexity, a number of approximation methods
for Gaussian process regression have been proposed. In partic-
ular, the sparse greedy approximation method [29], the Nystrom
method [30], the informative vector machine [31], the likeli-
hood approximation [32], and the Bayesian committee machine
[33] have been shown to be effective for many problems.
In particular, it has been proposed that spatio-temporal

Gaussian process regression can be applied to truncated obser-
vations including only measurements near the target position
and time of interest for agents with limited resources [10]. To
justify prediction based on only the most recent observations, a
similar argument has been made in [34] in the sense that the data
from the remote past do not change the predictors significantly
under the exponentially decaying correlation functions.
In this paper, we also assume that at each iteration the mobile

sensor networks only needs to fuse a fixed number of truncated
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observations, which are near the target points of interest, to limit
the computational resources.

B. Monte Carlo and Importance Sampling

In what follows, we briefly review Monte Carlo and Impor-
tance sampling based on [35]. The idea of Monte Carlo sim-
ulation is to draw an i.i.d. set of random samples
from a target density , where . These
random samples will be used to approximate by an empir-
ical point-mass function , where

denotes the Dirac delta. Consequently, the integrals
can be approximated with tractable sums that converge
as follows.

is an unbiased estimator. In addition, it will almost surely
asymptotically converge to , which can be proved by the
strong law of large numbers. Considering for
simplicity, if satisfies ,

then the variance of the estimator converges to as
increases. In particular, the central limit theorem provides

us with convergence in distribution as follows.
, where denotes convergence in distri-

bution.
Importance sampling is a special case of Monte Carlo

implementation, having random samples generated from an
available distribution rather than the distribution of interest.
Let us introduce an arbitrary importance proposal distribution

whose support includes the support of . We can
then rewrite as , where

is known as the importance weight. Simulating

i.i.d. samples according to and evaluating
, a possible unbiased Monte Carlo estimate of is

given by .

Under weak assumptions, the strong law of large num-
bers applies, yielding . This integration

method can also be interpreted as a sampling method
where the posterior density is approximated by

, and is the integra-

tion of with respect to the empirical measure .
In this paper, we shall compute the ratio of two integrals in

the form of

(6)

where , and are defined on a space . To com-
pute in (6), we use the following approximation as pro-
posed in [36].

(7)

where is a sequence of i.i.d. random vectors,
which is drawn from distribution.
In the following theorem, which can be shown to be a special

case of the results from [36], we show the convergence proper-
ties of the approximation in (7) as functions of , the number of
random samples [36].
Theorem 2: (Theorems 1 and 2 from [36]) Consider the

approximation given in (7) to the ratio given
in (6). If is proportional to a proper probability
density function defined on , and , and

are finite, we have

where

Proof: It is a straightforward application of the results from
Theorems 1 and 2 in [36] to (6) and (7).

C. Laplace Approximations

The Laplace method is a family of asymptotic approxima-
tions that approximate an integral of a function, i.e., ,
where , and . Let the function be in
a form , where , and
is a two times continuously differentiable real function on .
Let denote the exact mode of , i.e.,

Then Laplace’s method produces the approximation [24]:

(8)

where . The Laplace approximation in (8)
will produce reasonable results as long as the is unimodal
or at least dominated by a single mode.
In practice it might be difficult to find the exact mode of .

A concept of an asymptotic mode is introduced to gauge the
approximation error when the exact mode is not used [26].
Definition 3: is called an asymptotic mode of order

for if as , and
.

Suppose that is an asymptotic mode of order
for and satisfies the regularity conditions given in
Appendix A. Then it follows that we have

(9)
where is given by
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More precise form with the asymptotic mode of order
is computed for an approximation of order in

[27].
In many Bayesian inference applications and as in our

problem, we need to compute the ratio of two integrals. To
this end, fully exponential Laplace approximations has been
developed by [24] to compute Laplace approximations of the
ratio of two integrals, i.e.,

(10)

If each of and has a dominant peak at its maximum, then
Laplace’s method may be directly applied to both the numerator
and denominator of (10) separately. If the regularity conditions
are satisfied, using (8) for the denominator approximation and
(9) for the numerator approximation, Miyata [26] obtained the
following approximation and its error order,

(11)

where is the exact mode of , and is the asymptotic mode
of , and

(12)

Laplace approximations typically has an error of order
as shown in (8) and (9). On the other hand, fully exponential
Laplace approximations for the ratio form yield an error of order

as shown in (11) since the error terms of order
in the numerator and denominator cancel each other [24].
Fully exponential Laplace approximations which are pre-

sented in (11) is limited for positive functions. Then, Tierney
et al. [25] proposed a second-order approximation to the ex-
pectation of a general function (not necessarily positive)
by applying the fully exponential method to approximate

and then differentiating the approxi-
mated . Consider is defined as follow

where , and is positive, while
could be positive or negative. In particular, eval-

uated at yields a second-order approximation to
and its order of the error as follow.

(13)

This method, which is called moment generating function
(MGF) Laplace approximation, gives a standard-form approxi-
mation using the exact mode of [25].
Miyata [26], [27] extended the MGF method for one without

computing the exact mode of . Let be an asymptotic
mode of order for . Suppose that satisfies
the regularity conditions for the asymptotic-mode Laplace

method. By using Theorem 5 in [26], the approximation of
and its error order are given as

(14)

where is the -th row, -th column element of the matrix
. Furthermore, if is the exact mode of , then the

approximation has a simpler form because the terms that include
vanish

(15)

III. THE PROBLEM STATEMENT

In practice, (data with perfect localization) is not avail-
able due to localization uncertainty, and instead its exact sam-
pling points will be replaced with noise corrupted sampling
points. To average out measurement and localization noises,
in this paper, we propose to use a sampling scheme in which
multiple measurements are taken repeatedly at a set of sam-
pling points of a sensor network. For robotic sensors or mo-
bile sensor networks, this sampling strategy could be efficient
and inexpensive since the large energy consumption is usually
due to the mobility of the sensor network. Let sensing agents
be indexed by . From the proposed sampling
scheme, we assume that each agent takes multiple data pairs

, which are indexed by at
a set of sampling points by the sensor network .
We then define the map that takes the index of
the data pair in as the input and returns the index of the sensor
that produced the data pair as the output. Consider the following
realizations using the sampling scheme and the notation just in-
troduced.

where is an i.i.d. white Gaussian noise with a zero mean
and a variance of , i.e., and is a lo-
calization error which has a multivariate normal distribution
with a zero mean and a covariance matrix , i.e.,

. For instance, the distribution of the localiza-
tion error may be a result of the fusion of GPS and INSmeasure-
ments [15], or landmark observations and robot’s kinematics
[37].
To simplify the notation, is introduced to denote the data

with the measurement noise and localization error as follows.

(16)



228 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

We also define the collective sampling point vectors with and
without localization uncertainty, and the cumulative localization
noise vector, respectively by

(17)

From the proposed sampling scheme, to average out the mea-
surement and localization uncertainties, the number of measure-
ments can be increased without increasing the number of sen-
sors , and consequently without increasing the dimension of

. Hence, this approach may be efficient for the re-
source-constrained (mobile) sensor network at the cost of taking
more measurements. Using collective sampling point vectors in
(17), we have the following relationship.

(18)

where , and if
, otherwise .

The conditional probabilities and can be ex-
pressed as

where . From a Bayesian perspective,
we can treat as a random vector to incorporate a prior distri-
bution on . For example, if we assign a prior distribution on
such that then we have

(19)

where and .
Evaluating posterior predictive statistics such as the density,

the mean, and the variance are of critical importance for the
sensor network applications.
Therefore, given the data in (16), our goal is to compute

the posterior predictive statistics. In particular we focused on
the following two quantities given in detail.
• The predictive mean estimator (PME) is given by

.

(20)

where is given by (3).
• The predictive variance estimator (PVE) is obtained simi-
larly. From the following equation,

where , we obtain
given as the following formula.

(21)

where is given by (4).
The main challenge to our problems is the fact that there are

no closed-form formulas for the posterior predictive statistics
listed in (20), and (21). Therefore, in this paper, approximation
techniques will be carefully applied to obtain approximate solu-
tions. In addition, the tradeoffs between the computational com-
plexity and the precision will be investigated for the sensor net-
works with limited resources.
From (19), one might be tempted to use the best estimate of
, e.g., the conditional expectation of for given measured lo-
cations , i.e., for Gaussian process regression. Com-
parison between these type of quick-and-dirty solutions and the
proposed Bayesian approaches will be evaluated and discussed
with simulated and experimental data presented in Sections VII
and VIII, respectively.

IV. THE MONTE CARLO METHOD

In this section, we propose importance sampling to compute
the posterior predictive statistics. We also summarize the con-
vergence results of the MC estimators based on Theorem 2.

A. Predictive Mean

The predictive mean estimator is given by (20). Using im-
portance sampling to approximate (20) leads to the following
equation,

(22)

Theorem 2 and (22) lead to

where ,
is calculated from (3), and has been sampled from
given by (19).

B. Predictive Variance

For the prediction error variance given by (21), we have

Thus, we propose the following estimator.

(23)
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where ,
are obtained from the formulas similar to (4) and (3), and

is given by (22).
Applying Theorem 2 for

, , and , we obtain the
following results.

where ,
, and

Remark 4: Since is not available in (23),
is used instead. Subsequently, the convergence results for

are given with respect to which con-
verges to as by the definition.

V. FULLY EXPONENTIAL LAPLACE APPROXIMATIONS

In this section, we propose fully exponential Laplace approx-
imations to compute the posterior predictive statistics. In the
process of applying Laplace approximations, we also obtain the
estimation of the sampling points given as a by-product. From
the observations given by (16), we can update the estimates
of the sampling points . To this end, we use the maximum a
posteriori probability (MAP) estimate of given by

(24)

A. Perdictive Mean

The predictive mean estimator, given by (20), can be ap-
proximated using MGF method (14). To compute , let

. Using

(25)

the predictive mean estimation using MGF method (MGF-
PME), and its error order are given as

(26)

where is given in (14) or (15). However, theMGF-PME
given by (26) needs the computation of the third derivative of
, which increases the complexity of the algorithm.
In this paper, another MGF method has been developed in

order not to use the third derivative of . To approximate the
derivative of at a point in (13), we utilize a three-point
estimation, which is the slope of a nearby secant line through the
points and . Approximating
the derivative in (13) with the three-point estimation, we can
avoid the third derivative in (14) or (15). We summarize our
results in the following theorem.

Theorem 5: Let be the exact mode of . The three-
point predictive mean estimator (TP-PME) and its order of the
error are given by

(27)

where is given by (25), and we have used the following
definitions

Proof: First we use the three-point method to approximate
derivative such that

Plugging into the above equation
and using (13), we obtain

(28)
By selecting , we recover the order of the error

. By computing the esti-

mates and in (28) using (11), (27) is obtained.
Remark 6: The complexity of either (14) or (15) is

while the complexity of (27) is . In return, the error of (15)

is of order and the error of (27) is of order .

B. Predictive Variance

We now apply Laplace’s method to approximate the predic-
tion error variance in a similar way. The prediction error vari-
ance is given by (21). In this case, is given by (25) and

. Ap-
plying (11) to this case, the approximate of and its
order of the error are given by

(29)

where is the exact mode of , and is the asymptotic mode
of . and are given by (12) and is given
by (27).
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C. Simple Laplace Approximations

To minimize the computational complexity, one may prefer a
simpler approximation. In this paper, we propose such a simple
approximation at the cost of precision, which is summarized in
the following theorem.
Theorem 7: Let be an asymptotic mode of order

for given by (25). Assume that satisfies the regularity
conditions. Consider the following approximations for
and

(30)

(31)

where and are covariance matrices as in (3) but ob-
tained with .
We have then the following order of errors.

Proof: The approximation for given by (30) is the
first term of (14) neglecting high order terms. The second and
third terms in (14) have inside. is an asymptotic mode
of order for . By Definition 3, the last term of (14)
that contains is . Hence, without these high order
terms, we obtain a simpler approximation of order .
The approximation for given by (31) can be

obtained by approximating (21) with the first term of the MGF
approximation. Let , then

. Using the first term of MGF
,

and using , we obtain
. The procedure of showing the

order of the approximation error is the same as what was shown
for the approximation in (30).
Remark 8: Note that the simple Laplace predictive mean and

variance estimators in (30) and (31) take the same forms of the
original predictive mean and variance without the localization
error, respectively given in (3) and (4), evaluated at theMAP es-
timator of . As we previously mentioned, is the mode of
given by (25) and is the MAP estimator of , i.e., as
defined in (24). Therefore, the difference in the simple Laplace
approximations with respect to a quick-and-dirty solution in
which the measured location vector is used is that the simple
Laplace approximations use instead of .
In applying Laplace’s method, using the one step Newton gra-

dient method to compute asymptotic modes, e.g., required in
(29) or and required in (27) may not satisfy the regularity
conditions. In this case, one needs to continue the Newton gra-
dient optimization until the regularity conditions are satisfied.

VI. ERROR AND COMPLEXITY ANALYSIS

In this section, we analyze the order of the error and the com-
putational complexity for the proposed approximation methods,
which are summarized in Table I. A tradeoff between the ap-
proximation error and complexity can be chosen taking into ac-
count the performance requirements and constrained resources
for a specific sensor network application.

TABLE I
ERROR AND COMPLEXITY ANALYSIS

Fig. 2. A realization of the Gaussian process-ground truth.

For Laplace’s method, the order of the error ranges from
to at the cost of complexity from to
as shown in Table I.

For the Monte Carlo estimators, we introduce , which
is the probabilistic error order and it implies that the estimation
error converges to in distribution as the number of
random samples increases. Therefore it is not appropriate to
compare the error bound between Monte Carlo and Laplace’s
method exactly. Monte Carlo algorithms are used for multi-
variate integration of dimension . The probabilistic error
order of Monte Carlo algorithms that use sample evaluations
is of order for a given . We may assume that the order of
the error for Monte Carlo methods do not depend on the number
of measurements for a large [36]. With this assumption, the
number of samples needed forMonte Carlo algorithms to reduce
the initial probabilistic error by is of order . The
complexity of the Monte Carlo methods, for the investigated
problems in this paper, is . To achieve the probabilistic
error order , the complexity of Monte Carlo methods
has to be . If we want to keep the error order at the level of

and for Laplace’s and Monte Carlo methods,
respectively, the Monte Carlo methods are slightly more expen-
sive than Laplace’s method.

VII. SIMULATION RESULTS

In this section, we provide simulation results to evaluate the
performances of different estimation methods. To this end, a re-
alization of a Gaussian process that will serve as ground truth is
shown in Fig. 2. The Gaussian process is generated for
and in (1). The measurement noise and the sam-
pling position uncertainty variance are and

, respectively. and imply that 20
robot takes measurements twice at each sampling position. In
Figs. 2–7, the predicted fields and predicted error variance fields
are shown with color bars.
The results fromGaussian process regression using the noise-

less positions and the noisy measurement are shown in
Fig. 3.
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Fig. 3. Gaussian process regression using the true positions . a) The predictive
mean estimation. b) The predictive variance estimation, and the true sampling
positions in aquamarine crosses.

Fig. 4. The results of the QDS 1 approximations using . a) The predictive
mean estimation. b) The predictive variance estimation, and shown with aqua-
marine crosses.

To compare with typical quick-and-dirty solutions (QDS) to
deal with noisy locations in practice, we define two solutions:
QDS 1 and 2 approaches. QDS 1 is to applying Gaussian process
regression given by (3) and (4) by simply ignoring noises in the
locations and taking as the true positions, i.e.,

(32)

When the measurements are taken repeatedly as suggested in
Section III, QDS 1 could be improved. In this regard, QDS 2 is
to use the conditional expectation of sampling positions given
as in (19) and the least squares solution of for given , which

shall be plugged into Gaussian process regression, i.e.,

(33)

Fig. 5. The results of the QDS 2 approximations using . a) The predic-
tive mean estimation. b) The predictive variance estimation, and shown
with aquamarine crosses.

Fig. 6. The results of theMonte Carlo approximations with 1000 samples using
. a) The predictive mean estimation. b) The predictive variance estimation, and
shown with aquamarine crosses.

where is from (19) and is from (18). QDS 2 might be an
improved version of QDS 1 when there are many repeated mea-
surements for a set of fixed sampling positions. Figs. 4 and 5
show the results of applying QDS 1 and QDS 2 on and , re-
spectively. This averaging helps the QDS approach to generate
smoother predictions, and it shows improvement with respect to
QDS 1.
The results of the Monte Carlo method with sam-

ples are shown in Fig. 6. The results of Laplace’s method are
shown in Fig. 7, and they look very similar to those of theMonte
Carlo methods in Fig. 6. Figs. 4–7 clearly shows that both the
Monte Carlo and Laplace’s method outperform QDS 1 and 2
with respect to the true field in Fig. 3.
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Fig. 7. The results of the Laplace approximations using . a) Predictive mean
estimation. b) The predictive variance estimation, and shownwith aquamarine
crosses.

Fig. 8. The results of the simple Laplace approximations using . a) The pre-
dictive mean estimation. b) The predictive variance estimation, and shown
with aquamarine crosses. is the estimation of the true sampling positions,
computed as a by-product of both fully exponential Laplace and simple Laplace
approximations.

TABLE II
SIMULATION RMS ERROR

To numerically quantify the performance of each approach,
we have computed the root mean square (RMS) error between
the predicted and true fields for all methods, which are summa-
rized in Table II. This RMS error analysis could be done since

we know the true realization of the Gaussian process exactly in
this simulation study. As expected, Gaussian process regression
with the true locations perform best. The proposed approaches,
i.e., Monte Carlo and Laplace’s method outperform QDS 1 and
2 in terms of RMS errors as well.

VIII. EXPERIMENTAL RESULTS

A. Experiment With Simulated Noisy Sampling Positions

In this section, we apply proposed prediction algorithms
to a real experimental data set to model the concentration of
, , 24-trihydroxy- -cholan-3-one 24-sulfate (3 kPZS),

a synthesized sea lamprey (Petromyzon marinus) mating
pheromone, in the Ocqueoc River, MI, USA which the authors
of [38] provided. The sea lamprey is an ecologically damaging
vertebrate invasive fish invader of the Laurentian Great Lakes
[39] and a sea lamprey management program has been es-
tablished [40]. A recent study by Johnson et al. [38] showed
that synthesized 3 kPZS, a synthesized component of the
male mating pheromone, when released into a stream to reach
concentrations of (molar) or mol/L, triggers
robust upstream movement in ovulated females drawing 50%
into baited traps. The ability to predict 3 kPZS concentration
at any location and time with a predicted uncertainty level
would allow for fine-scale evaluations of hypothesized sea
lamprey chemo-orientation mechanisms such as odor-condi-
tioned rheotaxis [38]. Here 3 kPZS was added to the stream to
produce pulsing excitation to sea lampreys by applying 3 kPZS
at two minutes intervals [41]. To describe 3 kPZS concentration
throughout the experimental stream, rhodamine dye (Turner
Designs, Rhodamine WT, Sunnyale, CA, USA) was applied at
the pheromone release point (or source location) to reach a final
in-stream concentration of 1.0 mug/L (measure the concentra-
tion of the 3 kPZS). The same pulsing strategy is used when 3
kPZS was applied. The dye and 2 kPZS pumping systems are
shown in Fig. 9(a). An example of the highly visible dye plume
near the source location is shown in Fig. 9(c).
To quantify dye concentrations in the stream, water samples

were collected along transects occurring every 5 m from the sea
lamprey release cage (0 m) to the application location (73 m
upstream of release cage) as shown in Fig. 9(b). Three sampling
locations were fixed along each transect at 1/4, 1/2 and 3/4ths
the channel width from the left bank. Water was collected from
the three sampling sites along a transect simultaneously (three
samplers) every 10 sec. for 2 minutes time interval. Further, a
series of samples over 2 min were collected exactly 1 meter
downstream of the dye application location.Water samples were
collected in 5 ml glass vials and subsequently the fluorescence
intensity of each sample measured at 556 nm was determined in
a luminescence spectrometer (Perkin Elmer LSS55, Downers
Grove, IL, USA) and rhodamine concentration was estimated
using a standard curve .
The objective here is to predict the spatio-temporal field of

the dye concentration. In fact, the sampling positions are ex-
actly known from the experiment. Therefore, we will intention-
ally inject some noises in the sampling positions to evaluate the
proposed prediction algorithms in this paper. Before applying
the proposed algorithms, the hyperparameters such as and
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Fig. 9. (a) The dye pumping system. (b) An example of normal dye concen-
tration applied to the stream for the pheromone distribution estimation. (c) An
example of the highly visible dye plume near the source location.

were identified from the experimental data by amaximum a pos-
teriori probability (MAP) estimator as described in [16]. On the
other hand, the value for was set to
according to the noise level from the data sheet of the sensor.

Fig. 10. The results of Gaussian process regression using true . a) The pos-
terior mean estimation. b) The posterior variance estimation, and shown with
aquamarine crosses.

We consider the anisotropic covariance function [16] to deal
with the case that the correlations along different directions in

are different. Next, we performed a
change of variables such that in a transformed space and time.
The covariance function, given (1), could be used for the pro-
posed approaches.
For the case of this experiment, the spatial correlation along

the river flow direction is different from the correlation perpen-
dicular to the river flow direction. We consider the following
covariance function in the units for the experimental data.

(34)

Using this covariance function in (34) and computing likelihood
function with true value of , the hyperparameter vector

can be computed by the MAP estimator as follow:

(35)

Using the optimization in (35), we obtained ,
and . and are the coordinates

of the vertical and horizontal (flow direction) axes of Fig. 10. As
we expect, we have , i.e., the field is more correlated
along the river flow direction as compared to the perpendicular
to the river flow direction. Next, after finding MAP estimates
of hyperparameters and , we change the scale of each
component of , such that we have the same values for hyper-
parameters in the transformed coordinates. The new coordinates
are given by and we recover

as in (1). Note that scaling with , also transforms the
covariance matrix in a normalized space. Table III shows
parameter values which are estimated and used for the experi-
mental data.
Fig. 10 shows the predicted field by applying Gaussian

process regression on the true positions . To illustrate the
advantage of proposed methods over the QDS approach in
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TABLE III
EXPERIMENT PARAMETERS

Fig. 11. The results of the QDS 1 approach using noisy positions . a) The
predictive mean estimation. b) The predictive variance estimation, and shown
with aquamarine crosses.

Fig. 12. The results of the Monte Carlo method with 1000 samples using noisy
positions . a) The predictive mean estimation. b) The predictive variance esti-
mation, and shown with aquamarine crosses.

dealing with the noisy localizations, we show the results of
applying QDS 1, Monte Carlo, Laplace, and simple Laplace
approximations in Figs. 11, 12, 13, and 14, respectively. Since
there is only one measurement per position, QDS 2 is same
as QDS 1. As can be seen in these figures, the peaks of the
predicted fields by Monte Carlo and Laplace’s method with
noisy are closer to the peak predicted by the true than that
of the QDS approach. Indeed, QDS 1 has failed in Fig. 11 to
produce a good estimation of the true field with neglecting the
uncertainty in the positions, while Monte Carlo, Laplace and
simple Laplace methods, proposed in this paper, produce good
estimations in Figs. 12, 13, and 14, respectively.
Gaussian regression using true is our best estimation of

the true field (Fig. 10). Table IV shows the RMS errors of the
different estimation approaches using the noisy (i.e. ) with
respect to Gaussian regression using the true . As can be seen in
Table IV, the proposed approaches outperform QDS 1 in terms
of the RMS error.

Fig. 13. The results of the Laplace method using noise augmented positions
shown with aquamarine crosses. a) The predictive mean estimation. b) The

predictive variance estimation and shown with aquamarine crosses.

Fig. 14. The results of the simple Laplace method using noise augmented po-
sitions shown with aquamarine crosses. a) The predictive mean estimation.
b) The predictive variance estimation and shown with aquamarine crosses.

TABLE IV
EXPERIMENTAL RMS ERROR W.R.T. GAUSSIAN ESTIMATION

B. Experiment With Noisy Sampling Positions

In Section VIII-A we used the true and simulated noisy sam-
pling positions to compare the performance of the proposed ap-
proaches. In this section, we present another set of experimental
results under real localization errors. The experimental results
were obtained using a single aquatic surface robot in an out-
door swimming pool as shown in Fig. 15. The robot is capable
of monitoring the water temperature in an autonomous manner
while could be remotely supervised by a central station as well.
To measure the location of the robot, we used a Xsense MTi-G
sensory unit [42] (as shown in the center of Fig. 15(a)) which
consists of an accelerometer, a gyroscope, a magnetometer, and
a Global Positioning System (GPS) unit. A Kalman filter is im-
plemented inside of this sensor by the company, which produces
the localization of the robot with accuracy of one meter. More
information about this experiment can be found in [43]. In this
experiment, we have selected and identified the system param-
eters based on a priori knowledge about the process and sensor
noise characteristics. Therefore, model hyperparameters such as

, , , and are known. The
number of sampling positions and sampled measurements are

. To validate our approaches, we have controlled
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Fig. 15. a) The developed robotic sensor. b) The experimental environment- a
12 6 meters outdoor swimming pool.

Fig. 16. The results of the QDS 1 approach using noisy positions . a) The
predictive mean estimation. b) The predictive variance estimation, and shown
with aquamarine crosses.

the temperature field by turning the hot water pump on and off.
The hot water outlet locations have been shown in Fig. 15(b).
We turned on the hot water pump for a while. After that, the hot
water pump was turned off, and after 6 minutes, the robot col-
lected 10 measurements with 10 sec. time intervals.
The estimated temperature and its error variance fields, by

applying QDS 1, Monte Carlo, fully exponential Laplace, and
simple Laplace methods are shown in Figs. 16, 17, 18, and 19,

Fig. 17. The results of the Monte Carlo method with 1000 samples using noisy
positions . a) The predictive mean estimation. b) The predictive variance esti-
mation, and shown with aquamarine crosses.

Fig. 18. The results of the Laplace approximations using . a) Predictive mean
estimation. b) The predictive variance estimation, and shownwith aquamarine
crosses.

respectively. For each method, the estimated temperature and
its error variance fields are shown in subfigures of (a) and (b),
respectively.
As can be seen in Figs. 17, 18, and 19, results from Monte

Carlo, fully exponential Laplace, and simple Laplace methods
are well matched.

IX. CONCLUSION

We have formulated Gaussian process regression with obser-
vations under the localization uncertainty due to (possibly mo-
bile) sensor networks with limited resources. Effects of the mea-
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Fig. 19. The results of the simple Laplace method using noise augmented po-
sitions shown with aquamarine crosses. a) The predictive mean estimation.
b) The predictive variance estimation and shown with aquamarine crosses.

surements noise, localization uncertainty, and prior distributions
have been all correctly incorporated in the posterior predictive
statistics in a Bayesian approach. We have reviewed the Monte
Carlo sampling and Laplace’s method, which have been applied
to compute the analytically intractable posterior predictive sta-
tistics of the Gaussian processes with localization uncertainty.
The approximation error and complexity of all the proposed ap-
proaches have been analyzed. In particular, we have provided
tradeoffs between the error and complexity of Laplace approx-
imations and their different degrees such that one can choose a
tradeoff taking into account the performance requirements and
computation complexity due to the resource-constrained sensor
network. Simulation study demonstrated that the proposed ap-
proaches perform much better than approaches without con-
sidering the localization uncertainty properly. Finally, we ap-
plied the proposed approaches on the experimentally collected
real data to provide proof of concept tests and evaluation of
the proposed schemes in practice. From both simulation and
experimental results, the proposed methods outperformed the
quick-and-dirty solutions often used in practice.

APPENDIX

A. Regularity Conditions

In this section, we review a set of regularity conditions [26].
Let denote the open ball of radius centered at , i.e.,

. Let be the asymptotic
mode of order . The followings are regularity conditions.

A.1 .
A.2 .
A.3 , for all and all

with , where .
A.4 is positive definite and

.

A.5 and

where .
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