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Abstract— This paper presents a novel class of self-organizing it is well-known that fish schools climb gradients of nuttg&en
autonomous sensing agents that form a swarm and learn to |ocate the densest source of food. To locate resources,
the static field of interest through noisy measurements from fish schools use “taxis”, a behavior in which they orient

neighbors for gradient climbing. In particular, each senshg . . . . .
agent maintains its own smooth map which estimates the field. W'tlh respect to local gradients in gnwronme_ntal prqpertle

It updates its map using measurements from itself and its Grunbaum [10] showed that schooling behavior can improve
neighbors and simultaneously moves toward a maximum of the the ability of performing taxis to climb gradients, since th
field using the gradient of its map. The proposed cooperatilg  swarming alignment tendency averages out the stochastic
learning control consists of motion coordination based onte effects of individual sampling errors. The collective smar

recursive spatial estimation of an unknown field of interestwith . . .
measurement noise. The convergence properties of the proged behaviors of birds/fish/ants/bees are known to be the out-

coordination algorithm are analyzed using the ODE approach comes of natural optimization.
and verified by a simulation study. Tanner [4] and Olfati-Saber [5] presented comprehensive

analyses of the flocking algorithm by Reynolds [11]. This
flocking algorithm was originally developed to simulate the

In recent years, significant enhancements have been maglevements of flocking birds in computer graphics where
in the areas of sensor networks and mobile sensing agerdach artificial bird follows a set of rather simple distriait
Emerging technologies have been reported on coordinatigiiles [11]. A bird in a flock coordinates with the movements
of mobile sensing agents [1], [2], [3], [4], [5]. Mobile seéng  of its neighboring flock mates and tries to stay close to its
agents form an ad-hoc wireless communication network ifeighbors while avoiding collisions.
which each agent operates usually under a short commu-The contribution of this paper is to combine the recent
nication range, limited memory and computational poweswarming system theoretical results [4] [5] with a coopera-
To perform various tasks such as exploration, surveillancgvely learning mechanism to form an “artificial intelliges’
and environmental monitoring, mobile sensing agents requiof each individual, which results in “Cooperatively Leargi
distributed coordination to adapt to environments to aghie Mobile Agents” (CoLMAs). In particular, the sensing agent
a global goal. Among challenging problems of distributedyill receive collective measurements from its neighboring
coordination of mobile sensing agents, gradient climbinggents within a limited transmission range. Upon receiving
over an unknown field of interest has attracted much atte@ooperative measurements, each mobile sensing agent will
tion of control engineers. This has numerous applicationgcursively update the image of an unknown static field. In
including homeland security, toxic-chemical plume tracin this paper, the recursive estimation is based on radiakbasi
and environmental monitoring. For instance, the most conunction learning. To locate the maximum (or source) of the
mon approach to toxic-chemical plume tracing has beefield, the sensing agent will climb the gradient of its own
biologically inspiredchemotaxig6], [7], in which a mobile updated image of the unknown field. Equipped with a swarm-
sensing agent is driven according to a local gradient of thag behavior, access to cooperatively sensed measurements
chemical plume concentration. However, with this approacland the individualearning capability, CoLMAs are expected
the convergence rate can be slow and the mobile robot may be resilient not only to measurement noise but also to
get stuck in the local maxima of chemical plume concenocal maxima of a field. The proposed CoLMAs exactly
tration. The cooperative network of agents that performgimic the individual and social behaviors of a distributed
adaptive gradient climbing in a distributed environmenswapack of animals communicating locally to search for their
presented in [8], [9]. The centralized network can adapt itgensest resources in an uncertain environment. The fish
configuration in response to the sensed environment in ordgg¢hool’s efficient performance of climbing nutrient gradie
to optimize its gradient climb. to search food resources and the exceptional geographical

This problem of gradient climbing constantly occurs il’lmapping capability of drug sniffing dogs, have provided
biological species. Aquatic organisms search for faverabktrong incentives to invent cooperatively learning mobile
regions that contain resources for their survival. For gxam sensing agents.

o . _ - In this way, the distributed and scalable control law can
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measurement noise. Our strategy of the cooperative learnin
control can be applied to a large class of coordination
algorithms for mobile agents to deal with the field of intéres
that requires to be recursively estimated.

This paper is organized as follows. In Section II, we briefly
introduce the mobile sensing network model, notations re-
lated to a graph, and artificial potentials to form a swarming
behavior. A recursive radial basis function learning ailtyon
for mapping the field of interest is presented in Sectioniil.
Section 1V, cooperatively learning control is describethva
scheduled sampling rate. Section V analyzes the conveegenc
properties of the proposed coordination algorithm based on
the ODE approach. As an illustrative example, we apply

CoLMAs to a static field with measurement noise. Fig. 1. The model of the mobile sensing agent network. Fie agent
gathers measurements from all four neighboring sensingitage ar

interactive range.

Il. PRELIMINARIES

In this section, we explain notations and concepts that will
arise throughout the paper. £(g),i € T}. The adjacency matrixA := [a;;] of an
A. Mobile Sensing Agent Network undwec?ed graplG is a symmetnc mz_ﬂrlx such that;; =

. ) ] ) ks > 0 if vertex ¢ and vertex;j are neighbors and;; = 0

First, we explain the mobile sensing network and sens@finerwise. The scalar graph Laplacian= [I;;] € RN:*Ns
models used in this paper. L&f, be the number of sensing is 3 matrix defined ag, :— A(A) — A, where A(A) is
agents distributed over the surveillance regiin < R?, ‘a diagonal matrix whose diagonal entries are row sums of
WhICh is a compact set. The identity of each agent iy i.e., A(A) := diag(ijilaij)- The 2-dimensional graph
:nde?ed bfyﬁ] :‘:th{l’z.'” ’NS}'tLe;[ t‘?i(t) GRR bedtlhet Laplacian is defined ad := L ® I,, where ® is the
ocation of the:-th sensing agent at time € R and 18t .,necker product. A quadratic disagreement function [5]

q := col(qi,q2,- - ,qn,) € R*Ne be the configuration of .\ "1 o 4 the Laplacidn
the swarm system. The discrete time, high-level dynamics
of agent: is modeled by Tip— 1 Z aislip; — pil 2 3)
{ qi(t +8) = qi(t) + opi(t) ) (i-)€€(a)
pi(t +96) = pi(t) + oui(t) wherep := col(py, ps, -+, py,) € R2Ns,

where ¢;,p;,u; € R? are, respectively, the position, the A Swarming Behavior

velocity, and the input of the mobile agent addis the . . . _
iteration step size (or sampling time) which will be desedb Ve use attractive and repulsive smooth potentials similar
in detail in Section IV. We assume that the measuremelfl those used in [4], [5] to generate_a swarming behaV|o_r.
y(qi(k)) of the i-th sensor includes the scalar value of thel© enfqrce a group of agents FO saﬂsfy a set of algebraic
field (k) and sensor noisex(k), at its positiong;(k) and ~constraintslig; — g;|| = d for all j € N'(i, q), we introduce
some measurement sampling time index a collective potential

(@ (k) = elas(k). k) + k), @ Ur(a) =33 Us(rig) *)

i jFi

wherec: R x Ry — [0, ¢z is the field of interest. whereri; = [lgi — ;|12 and Vi, in (4) is defined by

B. A Graph

log(a + 7r45) + atd” ) if ri; <d?

1
The group behavior of mobile sensing agents and their ¢, .= 2 otrig (5)
complicated interactions with neighbors are best treajed b % log(a + d3) + gigg) otherwise,
graph with edges. Let(q) := (Z, £(q)) be a communication . . .
graph such that an edde, j) € £(¢) if and only if agent hered < dy. The gradient of the potential for agents
i can communicate with agent # i. We assume that ) =) @=4) i o g2
each agent can communicate with its neighboring agents VUi (¢:) = it (atri)? othgrwisg (6)

within a limited transmission range given by a radius of
r, as depicted in Fig. 1. Therefor¢i,j) € £(q) if and In equations (4), (5), (6)x was introduced to prevent the
only if ||¢:(t) — g;(¢)]] < r. For example, the-th agent reaction force from diverging at;; = |¢; — ¢;||* = 0. As

in Fig. 1 communicates with and collects measurementiftustrated in Fig. 2-(a), this potential yields a reactimnce
from all four neighboring sensing agents in thth agent’'s that is attracting when the agents are too far and repelling
communication range. We define the neighborhood of agewhen a pair of two agents are too close. It has an equilibrium
i with a configuration ofg by AV (i,q) := {5 : (i,j) € point at a distance of. We also introduce a potentigk to



and regressor§(y(vx), ¢(vi))}i—,, the paramete® can be
estimated to minimize the least-squares error

> W) — ¢ (1)0)>. (11)

k=1

Reaction force

For now, let us consider (2) without the sensor naigé).
For a set{(y(vk),¢(vx))},_,, the optimal least-squares
estimation solution is well-known [12] to be

L R B -
0 005 01 0.15 0.2 0%5‘ 03 035 0.4 045 05 @(n) = P(n, 1)(1) (n, I)Y(n, 1)7 (12)

where abusing notations slightly by(k) := y(v) and
o(k) := ¢(v) for simplicity, we define

T n—s
Y(n,s):=(y(s) y(s+1) -+ y(n) ) eRH
T n—s m
D(n,s):=( ¢(s) -+ ¢(n) ) eRTFX
P(n,s) := (®*(n, s)®(n,s)) "
Fig. 2. (a)-up: Reaction force generated by potential wepect ta-;;. (b)- _1
down: Uniformly and densely distributed Gaussian bases agirveillance n T
region R. = Z(b(k)gb (k) e R™X™,
k=s

eDuring a time interval between the coordination iteration
indicest andt + ¢ as in (1), we suppose that a sensing
agent has collectedsamples from itself and— 1 neighbors
within the transmission range. Suppose at previous iterati
the agent has already updated the fiéldoased on the
Us(q) — oo as||q|| — oo. (7) previous data se{(y(k),¢(k))},_;, wheren — s is the
total number of past measurement points. Now the sensing
agent needs to update the fiéldpon receiving cooperatively
U(q) = k1Us(q) + k2Us(q), (8) measured number of pointg (y(k), (k) }i_, 1, where

1 < s < N;. Then we have the following lemma.

Lemma 1:Assume thatb” (+)®(¢) is nonsingular for all
I1l. L EARNING MORBILE SENSING AGENTS t. For the collected number of observations and regressors,
r{_(y(lc), ¢(k))}eep_si1. cOnsider the recursive algorithm
given as

model the environment/; enforces each agent to stay insid
the closed and connected surveillance redg®and prevents
collisions with obstacles ifR. We construct/; such that it
is radially unbounded in, i.e.,

Define the total artificial potential by

whereky, ke > 0 are weighting factors.

In this section, we introduce a learning algorithm fo

each mobile sensing agent to estimate the spatial funetion
1

Suppose that the scalar fiell/) is generated by a network K(n) = P(n — 5)®7 (I+®.P(n— s)(I)T)_
of radial basis functions: N * ¥ * ’
m P(n)= (I - K(n)®,)P(n—s),
. . . 13
c(v) = Z ¢;(1)0; = ¢" ()6, ) O(n) =0(n—3s)+ K(n) [Y* - $.0(n— s)} , 13)
j=1
C = ¢T'(1)0
where¢” (v) and© are respectively by én,v) = ¢~ ()0 (n),
T( ). o where some abbreviations are definEd:= Y (n,n—s+1),
¢ (V) : ( ¢1(V) ¢2(V) T‘bm(y) ) o, = @(n,n—s—i—l), @T(n) = (I)T(n7 1), Y(n) — Y(n7 1)
O:= (6 6 - bn) . and P(n) := P(n,1). Then the recursive estimation pre-

sented in (13) is the least-squares estimation that mieisniz
the error function in (11).
65(v) = 1 exp —(v =) (v - @)7 (10) Proof: Itis straightforward and so omitted for brevity.

' Remark 2:®7(n)®(n) is always singular fom < m.

¢;(v) are Gaussian basis functions given by

4 o2
where o is the width of the Gaussian basis adtlis a @7 (n)®(n) is nonsingular forn > m except for the case
normalizing constants; for j € {1,---,m} are uniformly where measurements are only taken at a set of measure zero,
distributed in the surveillance regioR as shown in Fig. 2- for example, a line splitting two Gaussian radial basis func
(b). © € R™ is the parameter of the regression modetions symmetrically such that;(v) = ¢;(v). In practice, we
in (9). From (2), we have observations through sensors atart the recursive LSE algorithm in (13) with initié](o)
the locationvy, y(vx) = ¢ (1)© + w(k), where k is and P(0) = 0 which corresponds to the situation in which
a measurement sampling index. Based on the observatidthe parameters have an initial distribution and keep runnin



the recursive algorithm with new measurements. Along this

line, we defineP, (-) by

Pt (n) == P71(0) + @7 (n)®(n) - 0. (14)

IV. COOPERATIVELY LEARNING CONTROL

Each of mobile vehicles receives measurements from

Now we consider the measurement model (2) with thaeighbors, then updates its estimation of the gradienthga t
sensor noiseu(k). w(k) is assumed to be a white noisefecursive algorithm presented in (13). Subsequently, base

sequence with variancé@ given by

0. Bwmue) ={ o 15

whereE denotes expectation. Moreover, we assume that
(16)

Let the estimation error vector of the parameter be
O(n) == O(n) —
interest byVe(v) :=

99" (x)
ox

E(w(k)) = , (19)

|w(k)| < L with probability one (w.p.1Yk.

dc(x)
ox

. From (9), we have

Ve(v) = O =: (b/T(V)@ e R?*Y,

rT=v

(17)

where ¢'T'(v) € R?*™. Thus, the estimate of the gradient

of the field based on our algorithm with observatidhs—
{vr}r—y and{y(n)},cs is given by
Vén, S,v) = ¢'T (1)O(n, S) € R?¥L, (18)
The estimation error of the gradient can be obtained by
e(n,S,v) == ¢ (1)O(n, S) - Ve(v) = ¢'T (1) (n, 5)
= E(e(n, S,v)) +&(n, S,v),

(19)
where
E(e(n, S,v)) = Z VE) (bT (k) — 1|0,
k=1
&(n, S,v) := ¢ (v) | Pr(n) Y d(vp)w (k)]-
k=1

O. We define the gradient of a field of

on this new gradient, the control for its coordination will
be decided. We apply a new time notation to the recursive
algorithm in (13) according to the coordination time naiati

In particular, we replace —s € Z4 byt € Z4 andn € Z

by t + 1 € Z, in (13) such that the resulting recursive
algorithm with the new time index for agenft its position

qi(t) is given by

Ki(t+1) = P()®T (I + 0., P(1)d7) ",
P(t+1)=(I - K;(t+ 1)) Pi(1),

. . (22)
Oi(t+1) = @()+K(t+1) [Y —<I>M-®l-(t)],

whereY,;, ®,; of agent: are defined in the same way as

Y., ®, are defined in (13)Y,; is the collection of collabora-
tively measured data. From (2), for glle N (3, q(¢)) U {¢},

we have

wit) | = cuilt) +wailt),

(23)

where the sampled time of the measurements can vary
among sensors but we label the time index tbjor any
sampled time contained in a measurement period between
andt + 1. w;(t) is the measurement noise of sengpand

is independently and identically distributed overWe also

For " (n)®(n) = 0, the gradient estimator is unbiaseddefine new variables,;(¢) andw,;(t) as in (23) for later

asymptotically
lim E(e(n,S,v)) =0.

n—oo

(20)

The covariance matri€(£(n, S, v)é(n, S,v)T) is obtained
by

0 R 0, 8)8' () 0, 21)

where R(n, S) is defined by

nt T3 6067 )
k=1

R(n,S) := P(0)

use.

Based on the latest update of the gradient estimate
Vé;i(t, qi(t)), a distributed control for ageritis decided by

wi(t) == —VU((t))
+ 03 ay(a®)pi(t) = pi() + kaVéilt, ailt)),
JEN (4,q(t))

(24)

wherek, € R, is a gain factor. The first term in (24) is the

gradient of (8) which attracts agents while avoiding calis

R(n,S) asymptotically serves as a time average of oute¥mong them. Also it restricts the movements of agents inside
products of the collection of basis functions evaluatechat t R- Appropriate artificial potentials can be addedf¢g;:)
measurement point$. From (21), it is straightforward to see for agents to avoid obstacles 2. The second term in (24)
that the error covariance matrix is a function of the evadat is an effort for agent to match its velocity with those of

positionv in R, is proportional to noise to signal ratid’,
and decreases at the rate lofn and R~*(n, S). Now we
present our collaboratively learning control protocol.

neighbors. This term is also called a “velocity consensus”
and serves as a damping force.

Incorporating the closed-loop discrete time model in (1)



along with the proposed control in (24) gives D be a compact subset ddx such that the trajectories of

G(t+1) =qi(t) + v(O)pi(t) the associated ODEd

pilt+ 1) =pi(t) + 1] = VU (1) g™t = f(=ln) (%)
+ 3 aya®) () —pi(t)  (25) where f(z) := lim o EQ(t;x, §(t,x)), that start inD
JENGa(®) remain in a closed subsé?r of Dr for 7 > 0. Assume
' R that
1Ty . .
+had” (a(8))Oa(t + 1)}’ 1) there is a random variable such that
where we applied notations to (1) by replacifidy ~(t), z(t) € D and|p| < L infinitely often w.p.1 (30)

t+0 € Ry byt+1 € Z, andt € Ry byt € Z,.

The sampling rate of the coordination of CoLMAs will be 2)  the differential equation (29) has an invariant set
gradually increased for perfect tracking of the maximum D. with domain of attractionD4 > D.

of an unknown field. In particular, we propose the controFhenxz(t) — D. with probability one ag — oco.

protocol in Eq. (24) with the scheduling of the sampling timgroof: See [14].
Remark 4:Due to the assumptioM1 and the unbiased

(t) >0, S (t) = oo, N 2(t) < o0, estimates (20)f(z) in (29) of Theorem 3 is obtained by
! 2 2 (26) )
Jim sup[1/y(8) = 1/~(t = D] < oo. f@)= [ VU(q) - Lgw-voig | Y

In this protocol, the sampling time size deceases gradualyhereC(q) € R, is defined by
~v(t) — 0, ast — oo with properties in (26), which let us
apply the ODE approach [13], [14], [15] for convergence Clg) = k4z[cmm —clai)ls ks >0, (32)
analysis. ez
here ;4. IS the maximum of the entity of interest and is
V. CONVERGENCEANALYSIS assumed to be bounded.

In this section, we study the convergence properties of The global performance cost that serves as the global goal
CoLMAs. In order to analyze the convergence properties af CoLMAs, is defined as
(22), (25) and (26), we utilize Ljung’s ordinary differeaii P (1)p(r)
equation (ODE) approach developed in [13], [14], [15]. In V(q(7),p(7)) := U(q(7)) + 5 +C(q(1)). (33)
particular, Ljung [13], [14] developed an analysis teclusiq

of general recursive stochastic algorithms in the form of We have the following theorem.

Theorem 5:For any initial zo = col(qgo,po) € Dg, we
@)=zt —1)+~v@®)Qz(t —1),¢(t)), (27) consider the recursive coordination algorithm transfairime
terms of (27) and (28) under regularity conditions [14]. Let

along with the observation process Du = {z€Dg|V(z)<a) be a level-set of the cost

) = g(t;z(t — 1), 0(t — 1), e(t)). 2g) function in (33). LetD. be the set of all points inD4,

olt) = gt hel helt) (8) where LV (z) = 0. Then every solution starting from 4

By using z(t) := [q¢(t)T,p(t)T]T, where ¢(t) := approaches the largest invariant setlin with probability
COI(ql(t)a 54N (t))vp(t) = COI(pl (t)v * PNy (t))a we one ast — oo.

can transform (25) and (22) into (27) and (28) respectivelyProof: From Theorem 3, the asymptotic trajectaryr) :=
It can be shown that the regularity conditions in [14] areol(¢(7),p(7)) € Dg is given by the associated ODE
satisfied under the following assumptions: dz(7)
M1 Each agent collects > m number of measure- 5 = fa(m). (34)
ments at locationgvy };_, from itself and neigh-
bors so thaty";_, #(vi)d” (vx) = 0, wherem is

Taking the derivative o’ (z(7)) in (33) with respect tor
and using (34), we obtain

in (9).

M2  Artificial potentials and the adjacency matrix are dV(z(r))  (0V(x) T
continuously differentiable w.ry and derivatives dr - or fla(r)) (35)
are boundet

_ = —p"(r)L(q(r))p(r) < 0.
Let Dgr > = be an open connected set where the regularlte_( ) )
conditions [14] are valid. rom (7) and (33), we conclude thaf(z) is radially-

We will utilize the following theorem introduced in [13], UnPounded, i.e.y (z) — oo as|[z[[ — oc. Then
[14]. Dy:={z|V(z)<a}
Theorem 3:(Ljung [13], [14]) Consider the algorithm

(27) and (28) subject to the regularity conditions [14]. LefS @ bounded set withlV(z) < 0 for all = € Dy, which
is a positively invariant set. By LaSalle’s invariant prijle

1This can be done. See [5] and Theorem 3, Theorem 5 followsl



Fig. 3. True field of interest to be learned.

VI. SIMULATION RESULTS

We applied CoLMAs to the static field depicted in Fig. 3.
The estimate of the unknown field was updated once ps
iteration for coordination. Nine agents were launched witl

the equilibrium distance = 0.2 in Fig. 4. Fig. 4-(a) shows
that the recursively estimated image of the field by agent
at iteration timet = 80. This figure also shows that the

error field with large values (depicted by the colored lines

at regions that were not sampled by ageahd its neighbors.
Fig. 4-(b) illustrates the updated image of the field by agent
at iteration timet = 160. Nine agents have located the

maximum of the field successfully.

VII. CONCLUSIONS

known a priori and to be estimated for their mobility.
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ent climbing. The proposed cooperatively learning control
consists of motion coordination based on the recursive eSp)
timation of an unknown field of interest with measurement
noise. Our strategy of the cooperative learning control caf’]
be applied to a large class of coordination algorithms for
mobile agents in a situation where the field of interest is nots]
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