
Cooperatively Learning Mobile Agents for Gradient Climbin g

Jongeun Choi, Songhwai Oh and Roberto Horowitz

Abstract— This paper presents a novel class of self-organizing
autonomous sensing agents that form a swarm and learn
the static field of interest through noisy measurements from
neighbors for gradient climbing. In particular, each sensing
agent maintains its own smooth map which estimates the field.
It updates its map using measurements from itself and its
neighbors and simultaneously moves toward a maximum of the
field using the gradient of its map. The proposed cooperatively
learning control consists of motion coordination based on the
recursive spatial estimation of an unknown field of interestwith
measurement noise. The convergence properties of the proposed
coordination algorithm are analyzed using the ODE approach
and verified by a simulation study.

I. I NTRODUCTION

In recent years, significant enhancements have been made
in the areas of sensor networks and mobile sensing agents.
Emerging technologies have been reported on coordination
of mobile sensing agents [1], [2], [3], [4], [5]. Mobile sensing
agents form an ad-hoc wireless communication network in
which each agent operates usually under a short commu-
nication range, limited memory and computational power.
To perform various tasks such as exploration, surveillance,
and environmental monitoring, mobile sensing agents require
distributed coordination to adapt to environments to achieve
a global goal. Among challenging problems of distributed
coordination of mobile sensing agents, gradient climbing
over an unknown field of interest has attracted much atten-
tion of control engineers. This has numerous applications
including homeland security, toxic-chemical plume tracing
and environmental monitoring. For instance, the most com-
mon approach to toxic-chemical plume tracing has been
biologically inspiredchemotaxis[6], [7], in which a mobile
sensing agent is driven according to a local gradient of the
chemical plume concentration. However, with this approach,
the convergence rate can be slow and the mobile robot may
get stuck in the local maxima of chemical plume concen-
tration. The cooperative network of agents that performs
adaptive gradient climbing in a distributed environment was
presented in [8], [9]. The centralized network can adapt its
configuration in response to the sensed environment in order
to optimize its gradient climb.

This problem of gradient climbing constantly occurs in
biological species. Aquatic organisms search for favorable
regions that contain resources for their survival. For example,
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it is well-known that fish schools climb gradients of nutrients
to locate the densest source of food. To locate resources,
fish schools use “taxis”, a behavior in which they orient
with respect to local gradients in environmental properties.
Grünbaum [10] showed that schooling behavior can improve
the ability of performing taxis to climb gradients, since the
swarming alignment tendency averages out the stochastic
effects of individual sampling errors. The collective swarm
behaviors of birds/fish/ants/bees are known to be the out-
comes of natural optimization.

Tanner [4] and Olfati-Saber [5] presented comprehensive
analyses of the flocking algorithm by Reynolds [11]. This
flocking algorithm was originally developed to simulate the
movements of flocking birds in computer graphics where
each artificial bird follows a set of rather simple distributed
rules [11]. A bird in a flock coordinates with the movements
of its neighboring flock mates and tries to stay close to its
neighbors while avoiding collisions.

The contribution of this paper is to combine the recent
swarming system theoretical results [4] [5] with a coopera-
tively learning mechanism to form an “artificial intelligence”
of each individual, which results in “Cooperatively Learning
Mobile Agents” (CoLMAs). In particular, the sensing agent
will receive collective measurements from its neighboring
agents within a limited transmission range. Upon receiving
cooperative measurements, each mobile sensing agent will
recursively update the image of an unknown static field. In
this paper, the recursive estimation is based on radial basis
function learning. To locate the maximum (or source) of the
field, the sensing agent will climb the gradient of its own
updated image of the unknown field. Equipped with a swarm-
ing behavior, access to cooperatively sensed measurements
and the individuallearningcapability, CoLMAs are expected
to be resilient not only to measurement noise but also to
local maxima of a field. The proposed CoLMAs exactly
mimic the individual and social behaviors of a distributed
pack of animals communicating locally to search for their
densest resources in an uncertain environment. The fish
school’s efficient performance of climbing nutrient gradients
to search food resources and the exceptional geographical
mapping capability of drug sniffing dogs, have provided
strong incentives to invent cooperatively learning mobile
sensing agents.

In this way, the distributed and scalable control law can
be derived without the knowledge of the density of interest
in the environment, which is the main difference from
other coordination algorithms. The proposed cooperatively
learning control consists of motion coordination based on
the recursive estimation of an unknown field of interest with



measurement noise. Our strategy of the cooperative learning
control can be applied to a large class of coordination
algorithms for mobile agents to deal with the field of interest
that requires to be recursively estimated.

This paper is organized as follows. In Section II, we briefly
introduce the mobile sensing network model, notations re-
lated to a graph, and artificial potentials to form a swarming
behavior. A recursive radial basis function learning algorithm
for mapping the field of interest is presented in Section III.In
Section IV, cooperatively learning control is described with a
scheduled sampling rate. Section V analyzes the convergence
properties of the proposed coordination algorithm based on
the ODE approach. As an illustrative example, we apply
CoLMAs to a static field with measurement noise.

II. PRELIMINARIES

In this section, we explain notations and concepts that will
arise throughout the paper.

A. Mobile Sensing Agent Network

First, we explain the mobile sensing network and sensor
models used in this paper. LetNs be the number of sensing
agents distributed over the surveillance regionR ∈ R

2,
which is a compact set. The identity of each agent is
indexed byI := {1, 2, · · · , Ns}. Let qi(t) ∈ R be the
location of thei-th sensing agent at timet ∈ R+ and let
q := col(q1, q2, · · · , qNs

) ∈ R
2Ns be the configuration of

the swarm system. The discrete time, high-level dynamics
of agenti is modeled by

{

qi(t + δ) = qi(t) + δpi(t)
pi(t + δ) = pi(t) + δui(t)

, (1)

where qi, pi, ui ∈ R
2 are, respectively, the position, the

velocity, and the input of the mobile agent andδ is the
iteration step size (or sampling time) which will be described
in detail in Section IV. We assume that the measurement
y(qi(k)) of the i-th sensor includes the scalar value of the
field c(k) and sensor noisew(k), at its positionqi(k) and
some measurement sampling time indexk,

y(qi(k)) := c(qi(k), k) + w(k), (2)

wherec : R× R+ → [0, cmax] is the field of interest.

B. A Graph

The group behavior of mobile sensing agents and their
complicated interactions with neighbors are best treated by a
graph with edges. LetG(q) := (I, E(q)) be a communication
graph such that an edge(i, j) ∈ E(q) if and only if agent
i can communicate with agentj 6= i. We assume that
each agent can communicate with its neighboring agents
within a limited transmission range given by a radius of
r, as depicted in Fig. 1. Therefore,(i, j) ∈ E(q) if and
only if ‖qi(t) − qj(t)‖ ≤ r. For example, thei-th agent
in Fig. 1 communicates with and collects measurements
from all four neighboring sensing agents in thei-th agent’s
communication range. We define the neighborhood of agent
i with a configuration ofq by N (i, q) := {j : (i, j) ∈

r

i-th agent

N (i, q)

Fig. 1. The model of the mobile sensing agent network. Thei-th agent
gathers measurements from all four neighboring sensing agents in a r

interactive range.

E(q), i ∈ I}. The adjacency matrixA := [aij ] of an
undirected graphG is a symmetric matrix such thataij =
k3 > 0 if vertex i and vertexj are neighbors andaij = 0
otherwise. The scalar graph LaplacianL = [lij ] ∈ R

Ns×Ns

is a matrix defined asL := ∆(A) − A, where ∆(A) is
a diagonal matrix whose diagonal entries are row sums of
A, i.e., ∆(A) := diag(

∑Ns

j=1 aij). The 2-dimensional graph
Laplacian is defined aŝL := L ⊗ I2, where ⊗ is the
Kronecker product. A quadratic disagreement function [5]
can be obtained via the Laplacian̂L:

pT L̂p =
1

2

∑

(i,j)∈E(q)

aij ||pj − pi||
2, (3)

wherep := col(p1, p2, · · · , pNs
) ∈ R

2Ns .

C. A Swarming Behavior

We use attractive and repulsive smooth potentials similar
to those used in [4], [5] to generate a swarming behavior.
To enforce a group of agents to satisfy a set of algebraic
constraints‖qi − qj‖ = d for all j ∈ N (i, q), we introduce
a collective potential

U1(q) :=
∑

i

∑

j 6=i

Uij(rij), (4)

whererij := ‖qi − qj‖2 andVij in (4) is defined by

Uij :=







1
2

(

log(α + rij) + α+d2

α+rij

)

if rij < d2
0

1
2

(

log(α + d2
0) + α+d2

α+d2

0

)

otherwise,
(5)

hered < d0. The gradient of the potential for agenti is

∇U1(qi) =

{

∑

j 6=i
(rij−d2)(qi−qj)

(α+rij)2
if rij < d2

0

0 otherwise,
(6)

In equations (4), (5), (6),α was introduced to prevent the
reaction force from diverging atrij = ‖qi − qj‖2 = 0. As
illustrated in Fig. 2-(a), this potential yields a reactionforce
that is attracting when the agents are too far and repelling
when a pair of two agents are too close. It has an equilibrium
point at a distance ofd. We also introduce a potentialU2 to
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Fig. 2. (a)-up: Reaction force generated by potential with respect torij . (b)-
down: Uniformly and densely distributed Gaussian bases over a surveillance
regionR.

model the environment.U2 enforces each agent to stay inside
the closed and connected surveillance regionR and prevents
collisions with obstacles inR. We constructU2 such that it
is radially unbounded inq, i.e.,

U2(q) → ∞ as‖q‖ → ∞. (7)

Define the total artificial potential by

U(q) := k1U1(q) + k2U2(q), (8)

wherek1, k2 > 0 are weighting factors.

III. L EARNING MOBILE SENSING AGENTS

In this section, we introduce a learning algorithm for
each mobile sensing agent to estimate the spatial functionc.
Suppose that the scalar fieldc(ν) is generated by a network
of radial basis functions:

c(ν) :=

m
∑

j=1

φj(ν)θj = φT (ν)Θ, (9)

whereφT (ν) andΘ are respectively by

φT (ν) :=
(

φ1(ν) φ2(ν) · · · φm(ν)
)

Θ :=
(

θ1 θ2 · · · θm

)T
.

φj(ν) are Gaussian basis functions given by

φj(ν) :=
1

Z
exp

−(ν − κj)
T (ν − κj)

σ2
, (10)

where σ is the width of the Gaussian basis andZ is a
normalizing constant.κj for j ∈ {1, · · · , m} are uniformly
distributed in the surveillance regionR as shown in Fig. 2-
(b). Θ ∈ R

m is the parameter of the regression model
in (9). From (2), we have observations through sensors at
the locationνk, y(νk) = φT (νk)Θ + w(k), where k is
a measurement sampling index. Based on the observations

and regressors{(y(νk), φ(νk))}n
k=1, the parameterΘ can be

estimated to minimize the least-squares error

n
∑

k=1

(y(νk) − φT (νk)Θ)2. (11)

For now, let us consider (2) without the sensor noisew(k).
For a set {(y(νk), φ(νk))}n

k=1, the optimal least-squares
estimation solution is well-known [12] to be

Θ̂(n) = P (n, 1)ΦT (n, 1)Y (n, 1), (12)

where abusing notations slightly byy(k) := y(νk) and
φ(k) := φ(νk) for simplicity, we define

Y (n, s) :=
(

y(s) y(s + 1) · · · y(n)
)T

∈ R
n−s+1

Φ(n, s) :=
(

φ(s) · · · φ(n)
)T

∈ R
n−s+1×m

P (n, s) := (ΦT (n, s)Φ(n, s))−1

=

(

n
∑

k=s

φ(k)φT (k)

)−1

∈ R
m×m.

During a time interval between the coordination iteration
indices t and t + δ as in (1), we suppose that a sensing
agent has collecteds samples from itself ands−1 neighbors
within the transmission range. Suppose at previous iteration,
the agent has already updated the fieldĉ based on the
previous data set{(y(k), φ(k))}n−s

k=1 , where n − s is the
total number of past measurement points. Now the sensing
agent needs to update the fieldĉ upon receiving cooperatively
measureds number of points{(y(k), φ(k))}n

k=n−s+1, where
1 ≤ s ≤ Ns. Then we have the following lemma.

Lemma 1:Assume thatΦT (t)Φ(t) is nonsingular for all
t. For the collecteds number of observations and regressors,
{(y(k), φ(k))}n

k=n−s+1, consider the recursive algorithm
given as

K(n) = P (n − s)ΦT
∗

(

I + Φ∗P (n − s)ΦT
∗

)−1
,

P (n) = (I − K(n)Φ∗)P (n − s),

Θ̂(n) = Θ̂(n − s) + K(n)
[

Y∗ − Φ∗Θ̂(n − s)
]

,

ĉ(n, ν) := φT (ν)Θ̂(n),

(13)

where some abbreviations are defined:Y∗ := Y (n, n−s+1),
Φ∗ = Φ(n, n−s+1), ΦT (n) := ΦT (n, 1), Y (n) := Y (n, 1)
and P (n) := P (n, 1). Then the recursive estimation pre-
sented in (13) is the least-squares estimation that minimizes
the error function in (11).
Proof: It is straightforward and so omitted for brevity.

Remark 2:ΦT (n)Φ(n) is always singular forn < m.
ΦT (n)Φ(n) is nonsingular forn ≥ m except for the case
where measurements are only taken at a set of measure zero,
for example, a line splitting two Gaussian radial basis func-
tions symmetrically such thatφi(ν) = φj(ν). In practice, we
start the recursive LSE algorithm in (13) with initial̂Θ(0)
and P (0) ≻ 0 which corresponds to the situation in which
the parameters have an initial distribution and keep running



the recursive algorithm with new measurements. Along this
line, we defineP+(·) by

P−1
+ (n) := P−1(0) + ΦT (n)Φ(n) ≻ 0. (14)

Now we consider the measurement model (2) with the
sensor noisew(k). w(k) is assumed to be a white noise
sequence with varianceW given by

E(w(k)) = 0, E(w(k)w(z)) =

{

W if k = z
0 if k 6= z

, (15)

whereE denotes expectation. Moreover, we assume that

|w(k)| < L with probability one (w.p.1)∀k. (16)

Let the estimation error vector of the parameterΘ be
Θ̃(n) := Θ̂(n) − Θ. We define the gradient of a field of

interest by∇c(ν) := ∂c(x)
∂x

∣

∣

∣

x=ν
. From (9), we have

∇c(ν) =
∂φT (x)

∂x

∣

∣

∣

x=ν
Θ =: φ′T (ν)Θ ∈ R

2×1, (17)

whereφ′T (ν) ∈ R
2×m. Thus, the estimate of the gradient

of the field based on our algorithm with observationsS :=
{νk}n

k=1 and{y(µ)}µ∈S is given by

∇ĉ(n, S, ν) := φ′T (ν)Θ̂(n, S) ∈ R
2×1. (18)

The estimation error of the gradient can be obtained by

ε(n, S, ν) := φ′T (ν)Θ̂(n, S) −∇c(ν) = φ′T (ν)Θ̃(n, S)

= E(ε(n, S, ν)) + ξ(n, S, ν),
(19)

where

E(ε(n, S, ν)) = φ′T (ν)

[

P+(n)

n
∑

k=1

φ(νk)φT (νk) − I

]

Θ,

ξ(n, S, ν) := φ′T (ν)

[

P+(n)

n
∑

k=1

φ(νk)w(k)

]

.

For ΦT (n)Φ(n) ≻ 0, the gradient estimator is unbiased
asymptotically

lim
n→∞

E(ε(n, S, ν)) = 0. (20)

The covariance matrixE(ξ(n, S, ν)ξ(n, S, ν)T ) is obtained
by

φ′T (ν)
W

n
R−1(n, S)φ′(ν) � 0, (21)

whereR(n, S) is defined by

R(n, S) := P (0)−1/n +
1

n

n
∑

k=1

φ(νk)φT (νk)

R(n, S) asymptotically serves as a time average of outer
products of the collection of basis functions evaluated at the
measurement pointsS. From (21), it is straightforward to see
that the error covariance matrix is a function of the evaluated
positionν in R, is proportional to noise to signal ratioW ,
and decreases at the rate of1/n and R−1(n, S). Now we
present our collaboratively learning control protocol.

IV. COOPERATIVELY LEARNING CONTROL

Each of mobile vehicles receives measurements from
neighbors, then updates its estimation of the gradient via the
recursive algorithm presented in (13). Subsequently, based
on this new gradient, the control for its coordination will
be decided. We apply a new time notation to the recursive
algorithm in (13) according to the coordination time notation.
In particular, we replacen− s ∈ Z+ by t ∈ Z+ andn ∈ Z+

by t + 1 ∈ Z+ in (13) such that the resulting recursive
algorithm with the new time index for agenti at its position
qi(t) is given by

Ki(t + 1) = Pi(t)Φ
T
∗i

(

I + Φ∗iPi(t)Φ
T
∗i

)−1
,

Pi(t + 1) = (I − Ki(t + 1)Φ∗i)Pi(t),

Θ̂i(t + 1) = Θ̂i(t) + Ki(t + 1)
[

Y∗i − Φ∗iΘ̂i(t)
]

,

∇ĉi(t, qi(t)) = φ′T (qi(t))Θ̂i(t + 1),

(22)

whereY∗i, Φ∗i of agenti are defined in the same way as
Y∗, Φ∗ are defined in (13).Y∗i is the collection of collabora-
tively measured data. From (2), for allj ∈ N (i, q(t))∪ {i},
we have

Y∗i =









...
c(qj(t))

...









+









...
wj(t)

...









=: c∗i(t) + w∗i(t),

(23)

where the sampled time of the measurements can vary
among sensors but we label the time index byt for any
sampled time contained in a measurement period betweent
and t + 1. wj(t) is the measurement noise of sensorj, and
is independently and identically distributed overj. We also
define new variablesc∗i(t) and w∗i(t) as in (23) for later
use.

Based on the latest update of the gradient estimate
∇ĉi(t, qi(t)), a distributed control for agenti is decided by

ui(t) := −∇U(qi(t))

+
∑

j∈N (i,q(t))

aij(q(t))(pj(t) − pi(t)) + k4∇ĉi(t, qi(t)),

(24)

wherek4 ∈ R+ is a gain factor. The first term in (24) is the
gradient of (8) which attracts agents while avoiding collisions
among them. Also it restricts the movements of agents inside
R. Appropriate artificial potentials can be added toU(qi)
for agents to avoid obstacles inR. The second term in (24)
is an effort for agenti to match its velocity with those of
neighbors. This term is also called a “velocity consensus”
and serves as a damping force.

Incorporating the closed-loop discrete time model in (1)



along with the proposed control in (24) gives

qi(t + 1) =qi(t) + γ(t)pi(t)

pi(t + 1) =pi(t) + γ(t)
{

−∇U(qi(t))

+
∑

j∈N (i,q(t))

aij(q(t))(pj(t) − pi(t))

+ k4φ
′T (qi(t))Θ̂i(t + 1)

}

,

(25)

where we applied notations to (1) by replacingδ by γ(t),
t + δ ∈ R+ by t + 1 ∈ Z+ and t ∈ R+ by t ∈ Z+.
The sampling rate of the coordination of CoLMAs will be
gradually increased for perfect tracking of the maximum
of an unknown field. In particular, we propose the control
protocol in Eq. (24) with the scheduling of the sampling time

γ(t) > 0,

∞
∑

t=1

γ(t) = ∞,

∞
∑

t=1

γ2(t) < ∞,

lim
t→∞

sup[1/γ(t) − 1/γ(t− 1)] < ∞.

(26)

In this protocol, the sampling time size deceases gradually
γ(t) → 0, as t → ∞ with properties in (26), which let us
apply the ODE approach [13], [14], [15] for convergence
analysis.

V. CONVERGENCEANALYSIS

In this section, we study the convergence properties of
CoLMAs. In order to analyze the convergence properties of
(22), (25) and (26), we utilize Ljung’s ordinary differential
equation (ODE) approach developed in [13], [14], [15]. In
particular, Ljung [13], [14] developed an analysis technique
of general recursive stochastic algorithms in the form of

x(t) = x(t − 1) + γ(t)Q(t; x(t − 1), ϕ(t)), (27)

along with the observation process

ϕ(t) = g(t; x(t − 1), ϕ(t − 1), e(t)). (28)

By using x(t) := [q(t)T , p(t)T ]T , where q(t) :=
col(q1(t), · · · , qNs

(t)), p(t) := col(p1(t), · · · , pNs
(t)), we

can transform (25) and (22) into (27) and (28) respectively.
It can be shown that the regularity conditions in [14] are
satisfied under the following assumptions:

M1 Each agent collectss ≥ m number of measure-
ments at locations{νk}s

k=1 from itself and neigh-
bors so that

∑s
k=1 φ(νk)φT (νk) ≻ 0, wherem is

in (9).
M2 Artificial potentials and the adjacency matrix are

continuously differentiable w.r.tq and derivatives
are bounded1.

Let DR ∋ x be an open connected set where the regularity
conditions [14] are valid.

We will utilize the following theorem introduced in [13],
[14].

Theorem 3:(Ljung [13], [14]) Consider the algorithm
(27) and (28) subject to the regularity conditions [14]. Let

1This can be done. See [5]

D̄ be a compact subset ofDR such that the trajectories of
the associated ODE

d

dτ
x(τ) = f(x(τ)) (29)

where f(x) := limt→∞ EQ(t; x, ϕ̄(t, x)), that start inD̄
remain in a closed subset̄DR of DR for τ > 0. Assume
that

1) there is a random variableL such that

x(t) ∈ D̄ and|ϕ| < L infinitely often w.p.1 (30)

2) the differential equation (29) has an invariant set
Dc with domain of attractionDA ⊃ D̄.

Thenx(t) → Dc with probability one ast → ∞.
Proof: See [14].

Remark 4:Due to the assumptionM1 and the unbiased
estimates (20),f(x) in (29) of Theorem 3 is obtained by

f(x) =

[

p

−∇U(q) − L̂(q)p −∇C(q)

]

, (31)

whereC(q) ∈ R̄+ is defined by

C(q) := k4

∑

i∈I

[cmax − c(qi)], k3 > 0, (32)

here cmax is the maximum of the entity of interest and is
assumed to be bounded.

The global performance cost that serves as the global goal
of CoLMAs, is defined as

V (q(τ), p(τ)) := U(q(τ)) +
pT (τ)p(τ)

2
+ C(q(τ)). (33)

We have the following theorem.
Theorem 5:For any initial x0 = col(q0, p0) ∈ DR, we

consider the recursive coordination algorithm transformed in
terms of (27) and (28) under regularity conditions [14]. Let
DA := { x ∈ DR | V (x) ≤ a } be a level-set of the cost
function in (33). LetDc be the set of all points inDA,
where d

dτ
V (x) = 0. Then every solution starting fromDA

approaches the largest invariant set inDc with probability
one ast → ∞.
Proof: From Theorem 3, the asymptotic trajectoryx(τ) :=
col(q(τ), p(τ)) ∈ DR is given by the associated ODE

dx(τ)

dτ
= f(x(τ)). (34)

Taking the derivative ofV (x(τ)) in (33) with respect toτ
and using (34), we obtain

dV (x(τ))

dτ
=

(

∂V (x)

∂x

)T

f(x(τ))

= −pT (τ)L̂(q(τ))p(τ) ≤ 0.

(35)

From (7) and (33), we conclude thatV (x) is radially-
unbounded, i.e.,V (x) → ∞ as ||x|| → ∞. Then

DA := { x | V (x) ≤ a }

is a bounded set withd
dτ

V (x) ≤ 0 for all x ∈ DA, which
is a positively invariant set. By LaSalle’s invariant principle
and Theorem 3, Theorem 5 follows.�
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Fig. 3. True field of interest to be learned.

VI. SIMULATION RESULTS

We applied CoLMAs to the static field depicted in Fig. 3.
The estimate of the unknown field was updated once per
iteration for coordination. Nine agents were launched with
the equilibrium distanced = 0.2 in Fig. 4. Fig. 4-(a) shows
that the recursively estimated image of the field by agent1
at iteration timet = 80. This figure also shows that the
error field with large values (depicted by the colored lines)
at regions that were not sampled by agent1 and its neighbors.
Fig. 4-(b) illustrates the updated image of the field by agent1
at iteration timet = 160. Nine agents have located the
maximum of the field successfully.

VII. C ONCLUSIONS

This paper presented a novel class of self-organizing
autonomous sensing agents that form a swarm and learn
through noisy cooperative measurements from neighboring
agents to estimate an unknown field of interest for gradi-
ent climbing. The proposed cooperatively learning control
consists of motion coordination based on the recursive es-
timation of an unknown field of interest with measurement
noise. Our strategy of the cooperative learning control can
be applied to a large class of coordination algorithms for
mobile agents in a situation where the field of interest is not
known a priori and to be estimated for their mobility.
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