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FULLY BAYESIAN FIELD SLAM USING GAUSSIAN MARKOV
RANDOM FIELDS

Huan N. Do, Mahdi Jadaliha, Mehmet Temel, and Jongeun Choi

ABSTRACT

This paper presents a fully Bayesian way to solve the simultaneous localization and spatial prediction problem using
a Gaussian Markov random field (GMRF) model. The objective is to simultaneously localize robotic sensors and predict
a spatial field of interest using sequentially collected noisy observations by robotic sensors. The set of observations
consists of the observed noisy positions of robotic sensing vehicles and noisy measurements of a spatial field. To be
flexible, the spatial field of interest is modeled by a GMRF with uncertain hyperparameters. We derive an approximate
Bayesian solution to the problem of computing the predictive inferences of the GMRF and the localization, taking
into account observations, uncertain hyperparameters, measurement noise, kinematics of robotic sensors, and uncertain
localization. The effectiveness of the proposed algorithm is illustrated by simulation results as well as by experiment
results. The experiment results successfully show the flexibility and adaptability of our fully Bayesian approach in a
data-driven fashion.

Key Words: Vision-based localization, spatial modeling, simultaneous localization and mapping (SLAM), Gaussian
process regression, Gaussian Markov random field.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM)
addresses the problem of a robot exploring an unknown
environment under localization uncertainty [1]. The
SLAM technology is essential to robotic tasks [2]. The
variations of the SLAM problem are surveyed and
categorized with different perspectives in [3]. In gen-
eral, most SLAM problems have geometric models
[1,3,4]. For example, a robot learns the locations of
the landmarks while localizing itself using triangulation
algorithms. Such geometric models could be classified
in two groups, namely, a sparse set of features which
can be individually identified, often used in Kalman
filtering methods [1], and a dense representation such
as an occupancy grid, often used in particle filtering
methods [5].
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However, there are a number of inapplicable situa-
tions. For example, underwater autonomous gliders for
ocean sampling cannot find usual geometrical models
from measurements of environmental variables such as
pH, salinity, and temperature [6]. Therefore, in contrast
to popular geometrical models, there is a growing num-
ber of practical scenarios in which measurable spatial
fields are exploited instead of geometric models. In this
regard, we may consider localization using various spa-
tially distributed (continuous) signals such as distributed
wireless ethernet signal strength [7] or multi-dimensional
magnetic fields [8]. For instance, a localization approach
(so-called vector field SLAM) that learns the spatial vari-
ation of an observed continuous signal was developed
by modeling the signal as a piecewise linear function
and applying SLAM subsequently [9]. Gutmann et al. [9]
demonstrated the approach by an indoor experiment in
which a mobile robot performed localization based on
an optical sensor detecting unique infrared patterns pro-
jected on the ceiling. Do et al. [10] localized a mobile
robot for both indoors and outdoors by modeling the
high-dimensional visual feature vector extracted from
omni-directional images as a multivariate Gaussian ran-
dom field.

In this paper, we consider scenarios without geo-
metric models and tackle the problem of simultaneous
localization and prediction of a spatial field of inter-
est. With an emphasis on spatial field modeling, our
problem will be referred to as a field SLAM for the rest of
the paper.
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Spatial modeling and prediction techniques for ran-
dom fields have been exploited for mobile robotic sensors
[6,11–18]. Random fields such as Gaussian processes and
Gaussian Markov random fields (GMRFs) [19,20] have
been frequently used for mobile sensor networks to statis-
tically model physical phenomena such as harmful algal
blooms, pH, salinity, temperature, and wireless signal
strength, [15–18,21].

The recent research efforts that are closely related
to our problem are summarized as follows. The authors
in [22] formulated Gaussian process regression under
uncertain localization, distributed versions of which are
also reported in [23]. In [24], a physical spatio-temporal
random field was modeled as a GMRF with uncertain
hyperparameters and the prediction problems with local-
ization uncertainty were tackled. However, kinematics
or dynamics of the sensor vehicles were not incorpo-
rated in [22,24]. Brooks et al. [25] used Gaussian process
regression to model geo-referenced sensor measurements
(obtained from a camera). The noisy measurements
and their exact sampling positions were utilized in the
training step. Then, the locations of newly sampled
measurements were estimated by a maximum likeli-
hood. However, this was not a SLAM problem since
the training step had to be performed a priori for a
given environment [25]. The authors in [8,26] used the
Gaussian process regression to implement SLAM based
on a magnetic field and experimentally showed its fea-
sibility. O’Callaghan [27] used laser range-finder data
to probabilistically classify a robot’s environment into
a region of occupancy. They provided a continuous
representation of a robot’s surroundings by employ-
ing a Gaussian process. In [7], a WiFi SLAM prob-
lem was solved using a Gaussian process latent variable
model (GP-LVM).

To the best of our knowledge, the research efforts on
the field SLAM problem up to date have estimated hyper-
parameters off-line a priori. Therefore, they have not
addressed the uncertainties in the hyperparameters of the
spatial model (e.g., Gaussian process) in a fully Bayesian
manner. For example, Gutmann et al. [9] assumed a
piecewise linear function for the field and estimated the
linear model off-line a priori. Additionally Do et al.
[10] performed Gaussian process regression by estimat-
ing its hyperparameters off-line to build the localization
model a priori.

The main contribution of our work is to incor-
porate the uncertainties in the hyperparameters into a
model such that they converge to the optimal values in a
data-driven fashion. The advantage of our fully Bayesian
approach in this paper is well demonstrated by simula-
tion (Section III) and experiment results (Section IV).

The results show flexibility and adaptability of our fully
Bayesian approach in a data-driven fashion.

In this paper, we first formulate the field SLAM
problem in order to simultaneously localize robotic sen-
sors and predict a spatial random field of interest using
sequentially collected noisy observations by robotic sen-
sors. The set of observations consists of observed noisy
positions of robotic sensing vehicles and noisy measure-
ments of a spatial field. To be flexible, the spatial field of
interest is modeled by a GMRF with uncertain hyper-
parameters. We then derive an approximate Bayesian
solution to the problem of computing the predictive infer-
ences of the GMRF and the localization. Our method
takes into account observations, uncertain hyperparam-
eters, measurement noise, kinematics of robotic sens-
ing vehicles, and noisy localization. The effectiveness of
the proposed algorithm is illustrated by both simula-
tion and experiment results. In particular, the experi-
ment with a mobile robot equipped with a panoramic
vision camera shows that the fully Bayesian approach
successfully converges to the maximum likelihood esti-
mation of the hyperparameter vector among a number of
prior candidates.

A preliminary version of this paper without exper-
imental validation was reported at the 2013 American
Control Conference [28].

Notation. Standard notations will be used throughout
the paper. Let R and Z>0 be the sets of real and pos-
itive integer numbers, respectively. The collection of n
m-dimensional vectors {qi ∈ R

m | i = 1, · · · , n} is denoted
by q ∶= col

(
q1, · · · , qn

)
∈ R

nm. The operators of expec-
tation and covariance matrix are denoted by E and Cov,
respectively. A random vector x, which has a multivari-
ate normal distribution of mean vector 𝜇 and covariance
matrixΣ, is denoted by x ∼  (𝜇,Σ). For given G = {c, d}
and H = {1, 2}, the multiplication between two sets is
defined as H × G = {(1, c), (1, d), (2, c), (2, d)}. Other
notations will be explained in due course.

II. SEQUENTIAL BAYESIAN INFERENCE
FOR FIELD SLAM

In this section, we provide a foundation of our
approach by formulating the field SLAM problem and
subsequently by providing its approximate sequential
Bayesian solution.

2.1 From Gaussian processes to Gaussian Markov
random fields

In this section, we introduce a GMRF as a dis-
cretized Gaussian process on a lattice. Consider a
Gaussian process
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z(q) ∼ (m(q),(q, q′)),

where m(q) is a mean function, (q, q′) is a covariance
function defined with respect to locations q, q′ in a com-
pact domain, i.e., q, q′ ∈ c ∶= [0 xmax] × [0 ymax],
and z(q) is the realization of the Gaussian process z at
the robot position q. We discretize the compact domain
Sc into n spatial sites  ∶= {s[1], · · · , s[n]} ⊂ R

d , where
n = hxmax × hymax. h is chosen such that n ∈ Z. Note that
n → ∞ as h → ∞. The collection of realized values of the
random field in  is denoted by z ∶= (z[1], · · · , z[n])T ∈
R

n, where z[i] ∶= z(s[i]). The prior distribution of z is then
given by z ∼  (𝜇,Σ), and so we have

𝜋(z) ∝ exp
(
−1

2
(z − 𝜇)T Σ−1 (z − 𝜇)

)
,

where 𝜇 ∶= (m(s[1]), · · · ,m(s[n]))T ∈ R
n and the i, j -th ele-

ment of Σ is defined as Σ[ij] ∶= (s[i], s[j]) ∈ R. The prior
distribution of z can be written by a precision matrix
Q = Σ−1, i.e., z ∼  (𝜇,Q−1). This can be viewed as a
discretized version of the Gaussian process (or a GMRF)
with a precision matrix Q on  . Note that Q of this
GMRF is not sparse. However, a sparse version of Q, i.e.,
Q̂ with local neighborhood that can represent the origi-
nal Gaussian process can be found, for example, making
Q̂ close to Q in some norm [29–31]. This approximate
GMRF will be computationally efficient due to the spar-
sity of Q̂. In our approach, any model for 𝜇𝜃 and Q𝜃,
where 𝜃 is the hyperparameter vector, can be used. In
our simulation and experimental studies, we will use a
GMRF with a sparse precision matrix that represents a
Gaussian process precisely as shown in [24,32].

2.2 Multiple robotic sensors

Consider N spatially distributed robots with sensors
indexed by j ∈  ∶= {1, · · · ,N} sampling at time t ∈
Z>0. Suppose that the sampling time t ∈ Z is discrete.
Recall that the surveillance region is now discretized as
a lattice that consists of n spatial sites, the set of which
is denoted by  . Let n spatial sites in  be indexed by
 ∶= {1, · · · , n}, and z ∶= col

(
z[1], · · · , z[n]

)
∈ R

n be the
corresponding static values of the scalar field at n special
sites. We denote all robots’ locations at time t by qt ∶=
col

(
qt

[1], · · · , qt
[N]) ∈ N , the observations made by all

robots at time t by z̃t ∶= col
(

z̃[1]t , · · · , z̃[N]
t

)
∈ R

N , and

the observed positions of all robots at time t by q̃t ∶=
col

(
q̃[1]

t , · · · , q̃[N]
t

)
∈ N . q̃t and z̃t are noisy observations

of qt and z at time t, respectively.
At time t, robot j samples a noise corrupted mea-

surement at its current location qt
[j] = s[i] ∈  ,∀j ∈

 , i ∈ , i.e.,

z̃[j]t = z[i] + 𝜖
[j]
t , (1)

where the measurement errors {𝜖[j]t } are assumed to
be the independent and identically distributed (i.i.d.)

Gaussian white noise, i.e., 𝜖[j]t
i.i.d.∼  (0, 𝜎2

𝜖
). The measure-

ment noise level 𝜎2
𝜖
> 0 is assumed to be known, and we

define 𝜖t ∶= col
(
𝜖
[1]
t , · · · , 𝜖[N]

t

)
∈ R

N .

In addition, at time t, robot j samples a noisy obser-
vation of its own vehicle position.

q̃[j]
t = q[j]

t + e[j]t , (2)

where the observation errors {e[j]t } are distributed by

e[j]t
i.i.d.∼  (0, 𝜎2

e I).
The observation noise level 𝜎2

e > 0 is assumed to be

known, and we define et ∶= col
(

e[1]t , · · · , e[N]
t

)
∈ R

d×N .

We then have the following collective notations.

z̃t = Hqt
z + 𝜖t,

q̃t = Ltqt + et,
(3)

where Lt is the observation matrix for the vehicle states,
and Hqt

∈ R
N×n is defined by

H[ij]
qt

=
{

1, if s[j] = q[i]
t ,

0, otherwise.

2.3 Kinematics of robotic vehicles

In this section, we introduce a specific model for the
motion of robotic vehicles for a clear presentation. Each
robotic sensor is modeled by a nonholonomic differen-
tially driven vehicle in a two dimensional domain, i.e.,
 ∈ R

2. In this case, the kinematics of robot i can be
given by

[
q̇[1,i]

t
q̇[2,i]

t

]
=
[

u[i]
t cos𝜓 [i]

t
u[i]

t sin𝜓
[i]
t

]
+ w[i]

t , (4)

where {q[1,i]
t , q[2,i]

t }, {𝜓 [i]
t }, {u[i]

t }, and w[i]
t denote the iner-

tial position, the orientation, the linear speed, and the
system noise of robot i in time t, respectively.

We may assume that the orientation {𝜓 [i]
t |∀i ∈  }

can be updated from the turn rate {𝜂[i]t |∀i ∈  }. In this
case, the kinematics of the vehicle network can be further
described in a collective and discretized form as follows.

qt+1 = qt + Ftut + wt, (5)
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where ut is the known control input and wt in the i.i.d.
white noise realized by a known normal distribution
 (

0,Σwt

)
.

2.4 Problem formulation and its Bayesian predictive
inference

In this section, we formulate the field SLAM prob-
lem with a GMRF over a lattice and provide its Bayesian
solution. To be precise, we present the following assump-
tions A1-A5 for the problem formulation.

A1. The scalar random field z is generated by a GMRF
model which is given by z ∼  (𝜇𝜃,Q

−1
𝜃
), where

𝜇𝜃 and Q𝜃 are given functions of a hyperparameter
vector 𝜃.

A2. The noisy measurements {z̃t} and the noisy sam-
pling positions {q̃t}, as in (3), are collected by
robotic sensors in time t = 1, 2, · · ·.

A3. The control inputs ut and the orientation 𝜓t are
known deterministic values at time t.

A4. The prior distribution of the hyperparameter vec-
tor 𝜃 is discrete with a support Θ = {𝜃(1), · · · , 𝜃(L)}.

A5. The prior distribution of the sampling posi-
tions in time t, 𝜋(qt), is discrete with a
support Ω(t) = {q(k)

t |k ∈ (t)}, which is
given at time t. Here, (t) = {1, · · · , 𝜈(t)}
denotes the index in the support and 𝜈(t)
is the number of the probable possibilities
for qt.

Remark II.1. A1 states that the spatial field is modeled by
any GMRF. A2 is a standard noise assumption. Regard-
ing A3, when 𝜓t is not accurately integrated from noisy
turn rate 𝜂t, we will show how to relax this condition
of accurate orientation using the extended Kalman fil-
ter (EKF) [33]. A4 and A5 indicate that we consider
the hyperparameter vector and sampling positions as
discrete random vectors.

Problem II.2. . Consider the assumptions A1-A5. Our
field SLAM problem is to find the predictive distribution,
mean, and variance of z conditional on t ∶= {z̃1∶t, q̃1∶t},
where

z̃1∶t ∶= col(z̃1, · · · , z̃t) ∈ R
Nt ,

q̃1∶t ∶= col(q̃1, · · · , q̃t) ∈ Nt .

The solution to Problem II.2 is derived as follows.
The distribution of the GMRF is given by 𝜋

(
z|𝜃,t−1

)
=

 (
𝜇z|𝜃,t−1

,Σz|𝜃,t−1

)
. Recall that the evolution of qt is

given by (5) and the input ut is a known deterministic

value at time t. Therefore, 𝜋
(
qt|t−1

)
can be updated by

the Gaussian approximation of 𝜋(qt−1|t−1
).

𝜋
(
qt|t−1

)
≈

 (
𝜇qt−1|t−1

+ Ft−1ut−1,Σqt−1|t−1
+ Σwt−1

)
.

Similarly, 𝜋
(
z̃t|𝜃,t−1, qt

)
is updated by the Gaussian

approximation of 𝜋(z|𝜃,t−1) as follows.

𝜋
(
z̃t|𝜃,t−1, qt

)
≈

 (
Hqt

𝜇z|𝜃,t−1
,Σ𝜖t

+ Hqt
Σz|𝜃,t−1

HT
qt

)
.

(6)

Remark II.3. For the sake of decreasing complexity and
to make the entire algorithm sequential, the distribution
of qt|t−1 and z̃t|𝜃,t−1, qt are approximated by normal
distributions.

The joint distribution z, qt, 𝜃|t−1 is obtained
as follows.

𝜋
(
z, qt, 𝜃|t−1

)
=

𝜋
(
z|𝜃, qt,t−1

)
𝜋
(
𝜃|qt,t−1

)
𝜋
(
qt|t−1

)
.

Note that q̃t and z̃t are conditionally independent with
respect to {z, 𝜃,t−1} and q̃t, respectively. We can then
simplify 𝜋(q̃t|z, 𝜃, qt,t−1) and 𝜋(z̃t|z, 𝜃, qt, q̃t,t−1) by
𝜋(q̃t|qt) and 𝜋(z̃t|z, 𝜃, qt,t−1), respectively. The obser-
vation model is given by (3), thus the probabilities of
the observed data are 𝜋

(
z̃t|z, qt

)
=  (

Hqt
z,Σ𝜀t

)
and

𝜋
(
q̃t|qt

)
=  (

Ltqt,Σet

)
. The measured random vari-

ables have the following conditional joint distribution,

𝜋
(
z̃t, q̃t|z, qt, 𝜃,t−1

)
= 𝜋

(
z̃t|z, 𝜃, qt,t−1

)
𝜋
(
q̃t|qt

)
.

From Bayes’ rule, the posterior joint distribution of
the scalar field values, the sampling positions, and the
hyperparameter vector is given as follows.

𝜋
(
z, qt, 𝜃|t

)
=

𝜋
(
z̃t, q̃t|z, qt, 𝜃,t−1

)
𝜋
(
z,qt, 𝜃|t−1

)
𝜋
(
z̃t, q̃t|Dt−1

) .

In addition, 𝜋
(
qt, 𝜃|t

)
= ∫ 𝜋

(
z, qt, 𝜃|t

)
dz is

given as follows.

∫ 𝜋
(
z, qt, 𝜃|t

)
dz

=
𝜋
(
q̃t|qt

)
𝜋
(
𝜃|qt,t−1

)
𝜋
(
qt|t−1

)
𝜋
(
z̃t, q̃t|Dt−1

)
× ∫ 𝜋

(
z|𝜃, qt,t−1

)
𝜋
(
z̃t|z, 𝜃, qt,t−1

)
dz,

(7)
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where ∫ 𝜋
(
z | 𝜃, qt,t−1

)
𝜋

(
z̃t|z, 𝜃, qt,t−1

)
dz = 𝜋(

z̃t|qt, 𝜃,t−1

)
, and 𝜋(z̃t|qt, 𝜃,t−1) is given by (6).

Remark II.4. From the Bayes’ rule, 𝜋(𝜃|qt,t−1) is given

by
𝜋(𝜃,qt|t−1)
𝜋(qt|t−1) . We can compute 𝜋

(
𝜃, qt|t−1

)
for all the

possible combinations of qt in the previous iteration
using (7). However, for the sake of reducing the computa-
tional cost, we approximate 𝜋

(
𝜃|qt,t−1

)
by 𝜋

(
𝜃|t−1

)
.

Therefore, we have

𝜋
(
qt, 𝜃|t

)
≈

𝜋
(
q̃t|qt

)
𝜋
(
𝜃|Dt−1

)
𝜋
(
qt|Dt−1

)
𝜋
(
z̃t|qt, 𝜃,t−1

)
𝜋
(
z̃t, q̃t|Dt−1

) .

Marginalizing out uncertainties on the possible qt
and 𝜃, we obtain the following.

𝜋
(
z, 𝜃|t

)
=

∑
qt∈Ω(t)

𝜋
(
z, qt, 𝜃|t

)
,

𝜋
(
z|t

)
=
∑
𝜃∈Θ

𝜋
(
z, 𝜃|t

)
.

Our estimation of qt and 𝜃 can be updated using
measured data up to time t as follows.

𝜋
(
qt|t

)
=
∑
𝜃∈Θ

𝜋
(
qt, 𝜃|t

)
,

𝜋
(
𝜃|t

)
=

∑
qt∈Ω(t)

𝜋
(
qt, 𝜃|t

)
.

(8)

The predictive probability and mean of z|𝜃,t are
obtained as follows.

𝜋
(
z|𝜃,t

)
=

𝜋
(
z, 𝜃|t

)
𝜋
(
𝜃|t

) ,

𝜇z|𝜃,t
= 1

𝜋
(
𝜃|t

) ∑
qt∈Ω(t)

𝜇z|qt,𝜃,t
𝜋
(
qt, 𝜃|t

)
.

The predictive covariance matrix of z|𝜃,t can be
obtained using the law of total variance Σz|𝜃,t

=
E
(
Σz|qt,𝜃,t

)
+ Cov

(
𝜇z|qt,𝜃,t

)
, where the E and Cov is

computed over random variable qt. Such variables are
obtained as follows.

E
(
Σz|qt,𝜃,t

)
=

∑
qt∈Ω(t)

Σz|qt,𝜃,t
𝜋
(
qt|𝜃,t

)
,

Cov
(
𝜇z|qt,𝜃,t

)
=

∑
qt∈Ω(t)

(
𝜇z|qt,𝜃,t

− 𝜇z|𝜃,t

)
×
(
𝜇z|qt,𝜃,t

−𝜇z|𝜃,t

)T
𝜋
(
qt|𝜃,t

)
,

× Σz|𝜃,t
= −𝜇z|𝜃,t

𝜇T
z|𝜃,t

+ 1
𝜋
(
𝜃|t

)
×

∑
qt∈Ω(t)

(
Σz|qt,𝜃,t

+ 𝜇z|qt,𝜃,t
𝜇T

z|qt,𝜃,t

)
𝜋
(
qt, 𝜃|t

)
,

where the predictive mean and covariance of z|qt, 𝜃,t
are calculated using the Gaussian process regression as
follows.

𝜇z|qt,𝜃,t
= 𝜇z|𝜃,t−1

+ Σz|𝜃,t−1
HT

qt
Σ−1

z̃t|𝜃,t−1,qt

(
z̃t − 𝜇z̃t|𝜃,t−1,qt

)
,

Σz|qt,𝜃,t
= Σz|𝜃,t−1

− Σz|𝜃,t−1
HT

qt
Σ−1

z̃t|𝜃,t−1,qt
Hqt

Σz|𝜃,t−1
.

Finally, the first and second moments of qt|t are
obtained as follows.

𝜇qt|t
=

∑
qt∈Ω(t)

qt𝜋
(
qt|t

)
,

Σqt|t
=

∑
qt∈Ω(t)

(
qt − 𝜇qt|t

)2
𝜋
(
qt|t

)
.

The fully Bayesian field SLAM is now summarized
as Algorithm 1 in the Appendix.

To demonstrate the usefulness of the proposed field
SLAM, we apply it to two case studies under simulation
and experimental environments in the following sections.

III. SIMULATION STUDY

In this section, we demonstrate the effectiveness
of the proposed sequential Bayesian inference algorithm
(i.e., field SLAM) using a numerical experiment. We
construct our simulation scenario as follows. The robot
moves through a scalar field z that can be characterized
by a GMRF model, and takes noisy measurements of
its 2-D locations and the scalar field. We assume that we
know the control signal that was sent to the robot and
the initial prior distribution of the hyperparameter vec-
tor of the GMRF. In particular, we consider that a robot
is moving in a discretized surveillance region  . The spa-
tial sites in  consist of 31 × 31 grid points, i.e., n = 961,

© 2015 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd



Asian Journal of Control, Vol. 18, No. 5, pp. 1–14, September 2016

uniformly distributed over the surveillance region c ∶=
[−15, 15] × [−15, 15]. The evolution of the robot location
can be more detailed as follows.

qt+1 = Q
(
qt + Ftut + vt

)
= qt + Ftut + wt, (9)

where Q ∶ c →  is the nearest neighbor rule quantizer
that takes an input and returns a projected value on  .
vt is the process noise and wt is the quantization error
between the continuous and discretized states, i.e., wt ∶=
Q
(
qt + Ftut + vt

)
− (qt + Ftut). As the cardinality of 

increases, we have that wt → vt. A special case of (9) is
that Ftut is controlled and wt is chosen such that the next
location qt+1 is on a grid point in  . In this case, we have
vt = wt.

3.1 GMRF configuration

In this simulation study, we realize the spatial field
developed in [24], where a GMRF wrapped around in
a torus structure. Thus the top edge (respectively, the
left edge) and the bottom edge (respectively, the right
edge) are neighbors to each other. The parameters of

the model in [24] are selected as follows. The mean vec-
tor 𝜇𝜃 is chosen to be zero, and the precision matrix
Q𝜃 is chosen with hyperparameters 𝛼 = 0.1 equivalent

to a bandwidth 𝓁 =
√

2∕
√
𝛼 ≈ 4.47, and 𝜅 = 50

equivalent to 𝜎2
f
= 1∕4𝜋𝛼𝜅 ≈ 0.016. The prior distri-

bution of the hyperparameter vector 𝜃 is discrete with
a support

Θ = {(𝜅, 𝛼), (0.1𝜅, 𝛼), (10𝜅, 𝛼), (𝜅, 0.1𝛼), (𝜅, 10𝛼)} ,

along with the corresponding uniform probabilities
{0.2, 0.2, 0.2, 0.2, 0.2}. The measurement noise variance
in (1) is given by 𝜎𝜖 = 0.1.

A robot takes measurements at time t ∈
{1, 2, · · · , 100} with localization uncertainty. In
Fig. 1d,e,f true, noisy, and probable sampling positions
are shown in circles, stars, and dots, respectively, at time
t = 100. In this simulation, the standard deviation of
the noise in the observed sampling position is given by
𝜎e = 10 in (2). The probable sampling positions that
form support Ω(t), are selected within the confidence
region of Pr(‖q[i]

t − q̃[i]
t ‖ ≤ 𝜎e).

Fig. 1. The prediction results of Cases 1, 2 and 3 at time t = 100 are shown in the first, second, third columns, respectively. The first,
second, and third rows correspond to the prediction, prediction error variance, and squared empirical error fields between
the prediction and true fields. True, noisy, and probable sampling positions are shown in circles, stars, and dots, respectively.
The x and y axis represent 2-D localization, and colors represent the value of the desired quantity in the locations.
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3.2 Simulation results with accurate orientation

The results of the simultaneous localization and
spatial prediction are summarized for three methods
as follows.

• Case 1. Fig. 1a,d,g shows the prediction, predic-
tion error variance, and squared (empirical) error
fields, using exact sampling positions. With the true
sampling positions, the best prediction quality is
expected for this case.

• Case 2. Fig. 1b,e,h shows the resulting fields, by
using sampled noisy positions. The results clearly
illustrate that naively applying GMRF regression
to noisy sampling positions can potentially distort
prediction at a significant level. Fig. 1h shows that
squared error of this case is considerably higher than
that of Case 1.

• Case 3. Fig. 1c,f,i shows the resulting fields, by
applying Algorithm 1. The resulting prediction qual-
ity is much improved as compared to Case 2 and is
even comparable to the result for Case 1.

The true positions of the robot in the simulation
for time t ∈ s ∶= {10, 11, · · · , 30} are shown in Fig. 2
by red diamonds and lines. The estimated sampling posi-
tions of the robot E(qt|t) for t ∈ s are shown in
blue dots with estimated confidence regions. Fig. 2 clearly
shows that the proposed approach in this paper signifi-
cantly reduces the localization uncertainty as compared

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Fig. 2. Cases 1–3: The trajectories of true, predicted, and
noisy sampling positions of the robot are shown by red
diamonds, blue dots, and green stars for time
t ∈ {10, 11, · · · , 30}. The blue ellipsoids show the
confidence regions of about 90% for the estimated
sampling positions.

to the noise level of the sampled positions (denoted by
green stars).

Table I shows the root mean squared errors (RMSE)
in predictions of the scalar field and localizations using
GMRF regression with true sampling positions (Case 1),
GMRF regression with noisy sampling positions (Case
2) and the proposed approach with uncertain sampling
positions (Case 3). This shows the effectiveness of our
solution to Problem II.2.

3.3 Simulation results with noisy orientation

In this section, we show how to relax the condi-
tion that 𝜓t is not known and 𝜓t needs to be com-
puted from the noisy turn rate 𝜂t using the EKF. We
extend the evolution of the robot location described in
(9) to include the orientation state as follows. For the
sake of simplicity, we will describe the algorithm for
one robot.

Define 𝐱t ∈ R
3 as the state vector that includes posi-

tion and orientation of the robot, i.e., xt = [q[1]
t , q[2]

t , 𝜓t]T .
Therefore, we have the state transition equation of the
mobile robot:

𝐱t+1 = 𝐱t + Δt
⎡⎢⎢⎣

ut cos𝜓t
ut sin𝜓t

𝜂t

⎤⎥⎥⎦ + 𝜉t

= f
(
𝐱t, ut, 𝜂t

)
+ 𝜉t,

(10)

where 𝜉t ∼  (0,Σ𝜉t
) is the system process noise. Notice

that 𝜉t ∈ R
3 includes wt in (9) and the noise on the angu-

lar rate. The robot takes measurement of its own spatial
location, i.e.,

q̃t = M𝐱t + et, (11)

where

M =
[

1 0 0
0 1 0

]
.

We consider two localization schemes as follows.

Table I. The RMSE of predicted random
field and localization

RMSE

Predicted field Localization

Case 1 0.0862 0.00*
Case 2 0.1133 6.74
Case 3 0.1021 3.63

∗Since Case 1 uses exact sampling positions,
the localization error is zero.
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Table II. Comparison between GP-EKF
and EKF localization

Method Averaged RMSE

Case 4 EKF 12.3
Case 5 GP-EKF 9.9

• Case 4. EKF recursively predicts the location for
the next iteration using (10), then corrects the noisy
measurement q̃t based on the updated covariance
matrix. Notice that in Case 4, the EKF does not
utilize the field measurement.

• Case 5. We apply our proposed method as a
post-processing step that utilizes the results from the
EKF in Case 4, i.e., q̃t and 𝜓t are the estimated states
from the EKF.

We present a Monte Carlo simulation result with 50 iter-
ations to compare our proposed method with the EKF.
The averaged RMSEs are shown in Table II. The EKF
and our proposed methods are indicated as “EKF” and
“GP-EKF”, respectively. Table II clearly indicates that
our method outperforms the EKF by 19.5%.

In this example study, the fixed running time using
Matlab on a PC (3.2 GHz Intel i7 Processor, Intel Cor-
poration, Santa Clara, CA, USA) is about 100 seconds
for each iteration of time, which is fast enough for a real
world implementation.

IV. EXPERIMENTAL STUDY

In this section, we present experiment results when
our scheme is applied to vision-based localization.

We built a two-wheeled mobile robot equipped
with a panoramic vision camera, a micro-controller,
and two wireless routers as shown in the right-side
of Fig. 3. The micro-controller (Arduino MEGA
board, Open Source Hardware platform, Italy) runs a
proportional–integral–derivative (PID) controller. One
wireless router (TP-Link TL-WR703N 150M, TP-LINK
Inc., San Dimas, CA, USA) is used for streaming the
video recorded from the web-cam (Logitech HD web-
cam C310, Logitech, Newark, CA, USA) equipped with
a 360◦ panoramic lens (Kogeto Panoramic Dot Optic
Lens, Kogeto, New York, NY, USA) and another router
is used for receiving the control commands remotely via
the Internet.

The robot takes command inputs and a low-level
PID controller programmed in a micro-controller tracks
the inputs so that the mobility of the robot can be
described by

qt+1 = qt + Δt
[

ut cos𝜓t
ut sin𝜓t

]
, (12)

where Δt is the sampling time. qt, 𝜓t, and ut are the robot
position, the robot orientation, and the command input,
respectively. The orientation 𝜓t is re-calculated by the
given turn rates so that (12) is updated online.

Fig. 3 shows the mobile robot in the testing envi-
ronment. The mobile robot is controlled remotely by
a user while the panoramic vision of the surrounding
scene is recorded. Another overhead web camera (Log-
itech HD webcam C910, Logitech, Newark, CA, USA) is
mounted on the ceiling to measure the ground truth posi-
tions of the robot for evaluating the proposed approach.
Two PCs are used in the experiment, i.e., one for send-
ing command inputs to the robot and the other one for

Fig. 3. Left: The testing environment. Right: The mobile robot equipped with a panoramic vision camera.
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processing the images from the overhead web camera
for tracking robot’s trajectory for later evaluation, and
recording the scene streamed from the panoramic vision
camera installed on the robot. In summary, there are
three data sets collected from the experiment, all sampled
at 0.5 Hz. The command inputs, turn rates, and sam-
pling times {ut, 𝜂t,Δt} are sampled. The scene recorded
by the panoramic vision web-cam is streamed on-line.
The positions of the mobile robot are tracked by the
overhead camera.

4.1 Informative scalar field

In this section, we select an informative scalar field
from the vision data to be useful in localization. For
each sampling time, the frame (doughnut shape image in
Fig. 4a) from the video captured by the panoramic vision
camera is unwrapped into a panoramic image. The height
is the thickness of the doughnut shape image (Fig. 4a)
and the width is 2𝜋 × router, where router is its outer radius.
Each panoramic image is converted into a gray scale and
resized as a square picture as shown in Fig. 4b. To find an
informative feature from the vision data, a fast Fourier
Transform (FFT) is applied to the square images. For an
image of size M × M captured at sampling time t, the
two-dimensional FFT is given by

F [t](𝔲, 𝔳)=
M−1∑
a=0

M−1∑
b=0

f [t](a, b)exp
(
−j2𝜋

(
𝔲 a

M
+𝔳 b

M

))
∀𝔲, 𝔳 ∈ {0, 2, · · · ,M − 1},

(13)

where f [t](a, b) is the gray scale square image in the
spatial coordinates, 𝔲 and 𝔳 are coordinates in the fre-
quency domain, and j is the imaginary unit. For example,
the two-dimensional magnitude plot from one image
is shown in Fig. 4c. Note that energy waves mainly
distribute along the horizontal axis due to the dominant

vertical patterns occurring in the surrounding vision
images. Note that only the phase of the FFT is effected by
the direction of the robot while the magnitude is robust
with respect to the heading angle. Therefore, we utilize
the magnitude of the FFT of the features distributed in
the horizontal direction from (13) as follows.

m[t](𝔲) =|F [t](𝔲, 0)|,
where | ⋅ | denotes the magnitude of a complex num-
ber. To extract a good feature value, we fit m[t](𝔲) to an
exponential function:

ln m̂[t](𝔲, a1(t), a0(t)) = a1(t)𝔲 + ln a0(t),

∀𝔲 ∈ {0, · · · ,M − 1}.

The noisy scalar field observation by the robot at t
is now considered to be

{a⋆

1 (t), a
⋆

2 (t)} = argmin
a1(t),a2(t)

M−1∑
𝔲=0

{
ln m̂[t] − ln m[t]} ,

z̃(t) ∶= a⋆

1 (t).

The standardized measurements {z̃(t)} are plotted
in Fig. 4d.

In this section, we briefly explained how the infor-
mative scalar field was selected for vision-based localiza-
tion. However, the feature selection for this application
is another rich research topic in robotics and machine
learning communities [34], which is beyond the scope of
this paper.

4.2 GMRF modeling

In this section, we show how to model z(t) via a
GMRF model. The discretized surveillance region con-
sists of 41×61 grid points (instead of 31×31 as in the

(a) (b) (c) (d)
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Fig. 4. Feature extraction process: (a) The original doughnut shape image. (b) The resized panoramic image. (c) The zoomed-in
frequency-domain image. (d) The sampled (standardized) scalar field of interest over time iteration.
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Fig. 5. The probabilities distribution of the hyperparameters vector 𝜃 at (a) t = 1, (b) t = 3 and (c) t = 40.

Fig. 6. The top-view of the prediction error variance plotted
with the real robot’s trajectory in dashed white line.

simulation study) to be consistent with the frame ratio of
the overhead camera.

The maximum likelihood estimation (MLE) [20] of
the hyperparameter vector is found, which yields 𝛼 =
0.0661 (equivalent to a bandwidth 𝓁 = 5.5), and 𝜅 =
1.672 (equivalent to 𝜎2

f
= 0.72).

To test the data-driven adaptability of our fully
Bayesian SLAM, we construct a prior distribution (as
if we don’t have the MLE) centered around the MLE
such as

Θ = {(𝜅, 𝛼), (0.1𝜅, 𝛼), (10𝜅, 𝛼), (𝜅, 0.1𝛼), (𝜅, 10𝛼)},

along with the corresponding uniform probabilities
{0.2, 0.2, 0.2, 0.2, 0.2}. We then investigate the posterior
distribution of 𝜃 over the support set Θ. Note that Θ con-
tains the MLE (𝜅, 𝛼) hoping that our scheme converges to
this MLE. The measurement noise level is set by 𝜎𝜖 = 0.1.
The running time (using the same PC as in the simulation

Fig. 7. The 3D view of the predicted scalar field and
measurement of the robot at each sampling point are
plotted in gray surface and red line, respectively.

30 40 50 60 70 80 90
40

50
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80

Fig. 8. The ground truth, predicted path and noisy
observation are plotted in red diamonds, blue dots and
green stars, respectively.

case) is about 1000 seconds for each iteration, which can
be reduced when the structure of the loop in Algorithm 1
is exploited for parallelized computation.
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4.3 Experimental results

The mobile robot moves through the testing envi-
ronment and takes measurements for t ∈ e ∶=
{1, · · · , 40}. The updated discrete probability distribu-
tion of the hyperparameter vector 𝜃 in (8) at the sam-
pling times t = 1, t = 3 and t = 40 are shown
in Fig. 5. Fig. 5 clearly demonstrates the convergence
of the posterior distribution of 𝜃 by the peak at the
MLE (𝜅, 𝛼).

The top-view of the prediction error variance is
depicted in Fig. 6 with true positions of the robot plotted
in a dashed, white line. The 3D view of the predicted field
is plotted in Fig. 7 along with the interpolated measure-
ments from the robot over all sampling points. In contrast
to the simulation case, the robot mobility model may have
large modeling error due to the difference between the
model and real robot dynamics. The RMSE of predicted
robot locations when only using open-loop kinematics is
0.3393 (m) over the length of a 9 (m) trajectory. The esti-
mated sampling positions of the robot for all t ∈ e are
shown in blue dots in Fig. 8 along with the ground truth
and noisy measured positions in red diamonds and green
stars, respectively. Our proposed approach reduces the
RMS error to 0.1332 (m) with 61% improvement from the
open-loop prediction.

V. CONCLUSION

In this paper, we provide an approximate Bayesian
solution to the problem of simultaneous localization and
spatial prediction (field SLAM), taking into account
kinematics of robots and uncertainties in the precision
matrix, the sampling positions, and the measurements of
a GMRF in a fully Bayesian manner. In contrast to [24],
the kinematics of the robotic vehicles are integrated into
the inference algorithm. The simulation results show that
the proposed approach estimates the sampling positions
and predicts the spatial field along with their predic-
tion error variances successfully, in a fixed computa-
tional time. The feasibility of the proposed approach is
tested in a real world experiment. The experiment results
indicate the adaptability of the approach to handle the
noise from location measurement, scalar field observa-
tions, and the uncertainty of the kinematics model in a
data-driven fashion.
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