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1 Introduction

Since the very beginning, optimal control theory has been
developed around concepts such as dynamic programming [1], the
Hamilton–Jacobi–Bellman (HJB) equation [2], and Pontryagin’s
minimum principle [3]. These concepts continue to be of funda-
mental importance for stochastic optimal control [4–6] as well.
For continuous-time systems, the concept of the HJB equation for
deterministic systems naturally extends to stochastic differential
equations (SDEs) [7], or piecewise deterministic systems [8], as
well as stochastic hybrid systems [9]. Solutions of the HJB equa-
tion are generally nonsmooth, and the theory of viscosity solutions
[10] has to be used. However, the dynamic programming, which
is directly applicable only to control problems involving discrete
decision steps and discrete state space, can also be used for the nu-
merical evaluation of the HJB equation [5]. When there is an opti-
mal feedback control, it depends on the value function defined
over the state space. The evaluation of the value function can be
formulated as the estimation problem of a spatiotemporal scalar
field over the state space, which can be solved by using the Gaus-
sian process approximation of the value function [11–13].

However, the estimation of a spatiotemporal field has been a
topic of interest in its own right, especially with an increasing
exploitation of mobile robot sensor networks interacting with
uncertain environments [14–21]. To tackle a variety of tasks such
as exploration, estimation, prediction, and maximum seeking of a
scalar field, it is essential to deal with spatial models of various
physical fields. Computationally demanding, physics-based field
models (e.g., atmospheric modeling [22]) have been developed.
Recently, phenomenological and statistical modeling techniques
such as kriging, kernel regression, Gaussian process regression,
and Gaussian Markov random fields (GMRFs) have gained much
attention for resource-constrained mobile robots [14–18,23–29].

The outline of the paper is given as follows: First, we give tech-
nical preliminaries on SDEs in Sec. 2. In Sec. 3, we present two
stochastic optimal control problems for robotic vehicles. With
each problem, we provide the process involved in computing the
optimal control and its results. In Sec. 4, we give an exposition of
some recent developments on spatiotemporal models for sensor
network applications ranging from a simple parametric model to a
fully Bayesian approach [16–18,26–28].

Note that this paper is based on the previous works by the
authors and is not meant to be a comprehensive review of
the topics of interest. The aim of the paper is to provide a self-
contained material on the application of stochastic processes in
robotics so that readers can grasp the most important concepts
and acquire the knowledge necessary to jump-start their
research.

2 Langevin Equation and Îto Integrals

SDEs are those in which derivatives describing state evolutions
depend on stochastic processes. In the most general form, we can
write them as _x ¼ f x; n tð Þ; tð Þ, where x 2 Rm is a state, n tð Þ 2 Rm

is a stochastic process, and t 2 R1 denotes the time. Among all
variants of SDEs, the type that is commonly used in the Kalman
filter theory to describe the dynamics is

dx

dt
¼ a x; tð Þ þ b x; tð Þn tð Þ (1)

where a(x, t) and b(x, t) are nonlinear functions, i.e., mappings
of appropriate dimensions. This type of SDEs is also called the
Langevin equation. In this equation, n(t) is the so-called process
noise and is considered to be the zero-mean, unit intensity white
noise, i.e.,

E n tð Þg ¼ 0f and E n tið Þn tj
� �� �

¼ Im�md ti � tj

� �
(2)

where E denotes the expected value, Im�m is the unity matrix of
dimension m�m, ti and tj denote two arbitrary time points, and the
function d(t) is the Dirac delta function, which means that the pro-
cess n(t) has a covariance matrix E{n(t)2}¼ Im�md(0) that is not
bounded.

To deal with the white noise, we multiply the Langevin equa-
tion (1) by dt and rewrite it in a more convenient form as

dx ¼ a x; tð Þdtþ b x; tð Þdw (3)

where dw(t)¼ n(t)dt is an increment of the Wiener process w(t) at
time point t, i.e., dw(t) :¼w(tþ dt) – w(t), but the symbol t is usu-
ally omitted. Increments of the Wiener process are independent,
with the zero mean and the variance

E dw tð Þ2
n o

¼ Im�mdt (4)
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The solution of Eq. (3) can be expressed as a sum of two integral
terms

x tð Þ ¼ x t0ð Þ þ
ðt

t0

a x; sð Þdsþ
ðt

t0

b x; sð Þdw (5)

where s is the time variable used in the integration and ds is its in-
crement. Note that the solution x(t) is a stochastic process and that
the first integral includes only a(x, t), which is stochastic, while in
the second integral, both b(x, s) and dw are stochastic. The solu-
tion x(t) can be approximated as

x tð Þ � x t0ð Þ þ
XN�1

k¼0

a x; skð ÞDtþ
XN�1

k¼0

b x; skð ÞDwk (6)

with skþ1 � sk ¼ Dt; sk 2 tk; tkþ1½ �;Dwk ¼ w tkþ1ð Þ � w tkð Þ and

tk ¼ t0 þ kDt and Dt ¼ t� t0

N
(7)

The sums defining the solution depend on si, which is anywhere
in the interval [tk, tkþ1]. If the sampling points are chosen to be
sk¼ tk, where k¼ 0, 1, …, N–1, we deal with Îto stochastic inte-
grals and the corresponding Îto calculus. Equation (6) can be
rewritten in an iterative form as

xðtkþ1Þ � xðtkÞ þ aðx; tkÞDtþ bðx; tkÞDwk (8)

which approximates the solution of Eq. (3) under the assumptions
of Îto calculus and where Dw � Nð0;DtIm�mÞ is an
m-dimensional zero mean value Gaussian random vector with a
covariance matrix Dt Im�m. The latter can be illustrated with the
following scalar case (m¼ 1) of the SDE in Eq. (3).

When m¼ 1, a(x, t)¼ 0, and b(x, t)¼ 1, the SDE in Eq. (3) is
dx¼ dw, or, in other words, the solution x(t) is the one-
dimensional Wiener process, i.e., x(t)¼w(t). Thus, the solution
can be expressed by a simple stochastic integral and its approxi-
mation as

w tð Þ ¼
ðt

t0

dw � wN tð Þ ¼ w0 þ
XN�1

k¼0

Dwk (9)

where w0¼w(t0) is the value of w(t) at the time t0 and the usual
assumption is that w(t0)¼ 0. Since w(t) is a stochastic process, its
value, as well as its approximation at any time point wN (t) is ran-
dom, but we can find its statistical properties. The expected value
wN and the variance r2

wN
of wN are given, respectively, by

wN ¼ E wN tð Þf g ¼ w0

r2
wN
¼ E wN tð Þ � w0ð Þ2

n o
¼ NDt ¼ t� t0

(10)

In the limit of Dt! 0, we have in Eq. (9) an infinite sum;
therefore, based on the central limit theorem, we can say that the
distribution of w(t) is Gaussian, i.e.,

w tð Þ � N w0; t� t0ð Þ ¼
exp � 1

2

w tð Þ � w0ð Þ2

t� t0ð Þ

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p t� t0ð Þ

p (11)

Since the process w(t), which is the solution of the stochastic inte-

gral
Ð t

0
dw, is random, this Gaussian distribution is a complete

description of the solution w(t), i.e., the Wiener process. One way
of dealing with the solution of integrals, including random incre-
ments dw is to represent the solution in the form of differential

equations, where the Îto calculus chain rule is very useful.

The Îto calculus chain rule can be briefly derived based on the
following rules. First, we have to use the second-order Taylor
expansion of f(x). Second, if we have terms (dw)2, we have to sub-
stitute them with dt. Finally, every term of the form dtp with p> 1
should be ignored, i.e., considered to be zero. In the case of f
(x): R!R and dx defined by Eq. (3), and a, b: R�R!R, the
first rule yields

df xð Þ ¼ @f xð Þ
@x

dxþ 1

2

@2f xð Þ
@x2

dx2 (12)

After the substitutions of dx from Eq. (3) and (dw)2¼ dt, we have

df xð Þ ¼ @f xð Þ
@x

aþ 1

2

@2f xð Þ
@x2

b2

� �
dtþ @f xð Þ

@x
bdw (13)

The probability density function of the multidimensional
Wiener process w(t) � Rm is

w tð Þ /
exp � 1

2
w tð Þ � w0ð ÞT Im�m t� t0ð Þ½ ��1 w tð Þ � w0ð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p t� t0ð ÞN

q (14)

where the multivariate Gaussian distribution on the right side can
be also written as N w0; Im�m t� t0ð Þð Þ. The multidimensional
Wiener process and its increments are associated with the multidi-
mensional SDE in Eq. (3) and, in that case, the Îto chain rule is

df xð Þ ¼ @f T

@x
a x tð Þ; tð Þð Þ þ 1

2
tr

@2f

@x2
bbT

	 
� �
dtþ @f

@x
b x tð Þ; tð Þdw

where tr{A} is the trace of A. With this, we have covered all tech-
nical preliminaries that are necessary for a basic understanding of
SDE models and for considering the optimal control of SDEs.

3 Stochastic Approach to Robot Control

In this section, we describe elements of stochastic optimal con-
trol with applications to robotics. To keep examples nonlinear and
realistic, yet simple enough to be educational, we use two-
wheeled robot control problems similar to Refs. [30] and [31] that
can be easily replicated in laboratories. We model the robot as a
fixed velocity Dubins vehicle, and the only control variable is the
limited robot turning rate. This type of vehicles is nonlinear, non-
holonomic, and underactuated. It is also a good model for
autopilot-controlled unmanned aerial vehicles [32].

The control problems we consider are illustrated in Fig. 1. In
the first one (P1), the robot has to navigate to a point in the space
in a minimum expected time. In the second problem (P2), the
robot vehicle has to keep a constant distance from a moving tar-
get, while the target trajectory is unknown. These two problems
are different not only in the cost functions, but in the way that ran-
dom processes enter the models.

The stochastic component in (P1) is representative of the antici-
pated uncertainty of our control; for example, it results from the
noise in measurements that propagates to the control variable. In
(P2), the stochastic component results from the anticipation of
unknown target trajectory. None of these two problems includes
"real" disturbances, for example, stochastic drifts [33]. By this, we
underline that instead of using stochastic processes exclusively for
modeling of real, physical disturbances, we can use them to for-
mulate probability priors for the future evolution of dynamical
system states.

We present here the problems (P1) and (P2) because they can
be formulated as stochastic optimal control problems for which
there exists stochastic optimal control feedback control [1]. The
emphasis on feedback control, i.e., closed-loop optimal control, is
because it naturally leads to robot reactive behaviors. Note that
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the solutions of the problems we present are based on value func-
tions in the state space, which is in the core of machine learning
control methods known as reinforcement learning [34], or more
recently, as approximate dynamic programming [35]. In this
sense, we would like to point that the computation of optimal con-
trol can be linked to the problems of spatial or spatiotemporal
modeling of the scalar function, the techniques which are covered
in Sec. 4.

3.1 Minimum Expected Time Control (P1). In Fig. 1(a),
the robot navigates based on the feedback controlled turning rate
u with a constant velocity v to reach the target point seven in a
minimum time. Even though the robot motion is precisely exe-
cuted, the increments of the heading angle du may be noisy,
therefore, stochastic. To anticipate that uncertainty, we use the
following robot model:

dxx ¼ � cos hdt

dxy ¼ � sin hdt

du ¼ udtþ rrdw

(15)

in which xx and xy are the robot coordinates (see Fig. 1) and the
last equation defines a probabilistic prior for the evolution of the
heading angle u. The prior can be computed [36], but this is not
a necessary step for the computation of optimal feedback
control.

Although u is a well-defined, measurement dependent, feed-
back control variable, in our model we anticipate that the robot
trajectory will be always different even for the same initial posi-
tion. Since the SDE model in Eq. (15) defines a family of trajecto-
ries, we can only look for the control u that minimizes the
expected time to the target, i.e., the cost function is defined as

J uð Þ ¼ E

ðs

0

1dt

	 

(16)

where s is the time point in which the robot reaches a target set.
Since we would like to compute control that depends on the rela-

tive position, we use the relative coordinates r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þ x2
y

q
and a

(see Fig. 1), and Îto calculus to express the kinematics in
Eq. (15) as

dr ¼ �� cos adt

da ¼ �

r
sina� u

� �
dtþ rrdw

(17)

Because of the second equation, which is not bounded for r ! 0,
we define the target T not as a point, but as a set T :¼ r; að Þf
r 2 0; rmin½ �j ; a2 �amax; amax½ �g; amax 2 0;p=2ð Þ. The target set T

is defined as a set of robot positions within the circle of radius
rmin and a range of bearing angle a. The bearing angle range is not
required, but it is introduced to limit the angle under which the
circular set is entered.

We can define the cost-to-go function V(r, a), whose value is the
expected cost in Eq. (16) from the point in space (r, a) under the
assumption that the optimal control policy is applied. The cost-to-
go function can be found as the solution of the HJB equation

0 ¼ min
u

b1

@V

@r
þ b2 uð Þ @V

@a
þ r2

r

2

@2V

@a2
þ 1

	 

(18)

where b1¼ –� cos a and b2 uð Þ ¼ ð�=rÞ sin a� u match the dt mul-
tiplying expressions in Eq. (17), respectively. In this case, the
HJB is the second-order partial differential equation (PDE) due to
the stochastic component in Eq. (17) and includes the minimiza-
tion with respect to the control u. Instead of solving the HJB, we
can discretize the control problem defined by Eqs. (16) and (17)
using the locally consistent Markov-chain approximation [5] and
solve the problem computationally as a discrete time Markov-
chain control problem.

To discretize the control problem, we first define the discrete
steps Dr and Da for r and a, respectively. Then we substitute in
Eq. (18), b1ð@V=@rÞ ¼ ðV rþDr;að Þ �V r;að ÞÞ=Dr bþ1 �ðV r;að Þ
�V r�Dr;að ÞÞ=Dr b�1 , which is the derivative’s upwind approxi-

mation, bþ1 ¼max 0;b1½ �, b�1 ¼max 0;�b1½ �. We use the same defi-

nition for bþ2 and b�2 and substitute the derivative with respect to a
as b2ð@V=@aÞ ¼ ðV r;aþDað Þ �V r;að ÞÞ=Da bþ2 � ðV r;að Þ
�V r;a�Dað ÞÞ=Da b�2 . Finally, we substitute the second deriva-

tive in Eq. (18) as ð@2V=@a2Þ ¼ ðV r;aþDað Þ þV r;a�Dað Þ
�2V r;að ÞÞ= Dað Þ2, and if we move all the terms that include V(r, a)
to the left side of Eq. (18), define b1j j ¼ bþ1 þ b�1 ; b2j j ¼ bþ2 þ b�2

and Dt¼ ð b1j j=DrÞ þ ð b2j j=DaÞ þ ðr2
r= Dað Þ2Þ

� ��1

we obtain

V r; að Þ ¼ min
u

�
pDrþV r þ Dr; að Þ þ pDr�V r � Dr; að Þ

þ pDaþV r; aþ Dað Þ þ pDa�V r; a� Dað Þ þ Dt
�

(19)

with pDr6 ¼ Dtðb6
1 =DrÞ and pDa6 ¼ Dt

�
b6

2 =Daþ r2
r=ð2Da2Þ

�
that

can be interpreted as the discrete Markov-chain transition proba-
bilities from the point (r, a) to the points that are denoted in the
brackets of V. Note that Dt is the time interpolation interval
defined by other problem parameters; therefore, this type of dis-
cretization is called time implicit discretization [5].

Expression (19) is the discrete variant of Eq. (18), and it can be
solved numerically using the so-called value iteration [37] starting
from an initial guess for V(r, a) values. However, as in the case of
PDEs, for the bounded domain in which we compute the solution,
we have to specify boundary conditions. The computational do-
main is defined as C ¼ rminrmax½ � � ½�p;p� DaÞf g, which is the

Fig. 1 Fixed velocity two-wheel robot control problems: (a)
Minimum expected time control (P1); (b) Distance keeping con-
trol (P2); (xx,xy)—the robot coordinates relative to the target
which is at the origin, r—distance between the robot and the
target, u—robot heading angle, a—bearing angle and m—
velocity
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set bounded by the minimal rmin and maximal distance rmax. Since
the angle a has a full range, a2 �p;p� Da½ �, we have the periodic
boundary condition V r;p� Dað Þ ¼ V r;�pþ Dað Þ. A part of the
boundary rmin with a2 �amax; amax½ � belongs to our target set;
therefore, we specify that the expected time to reach the set of
these points is zero, i.e., V (rmin, a)¼ 0 for a2 �amax; amax½ �. This
is the so-called absorbing boundary condition. For all other
segments of the boundaries defined by rmin and rmax, we use the
reflective boundary conditions V rmin þ Dr; að Þ ¼ V rmin; að Þ and
V rmax þ Dr; að Þ ¼ V rmax; að Þ. This way we avoid specifying the
value function at these boundaries, but we actually incorporate
in our solution that the stochastic process does not cross the boun-
daries. This is true for the segments defined by r¼ rmin and
aj j > amax, but it is an approximation for the boundary r¼ rmax;

therefore, we should use a large enough rmax.
For the parameters of the problem r¼ 0.1, amax¼ p/4 and the

discretization Dr¼ 0.045 and Da¼ 2p/361, rmin¼ 0.01 and
rmax¼ 9.0, we obtain the results presented in Fig. 2. The figure
also identifies the boundaries and their nature. Note that the com-
puted control is “bang-bang,” which is a consequence of the fact
that we do not penalize the control. Therefore, the shape of control
policy is completely determined by the problem’s nonlinearity
and the presence of noise.

3.2 Distance Keeping Control (P2). The control in which
we navigate the robot to keep a constant distance from a moving
target is depicted in Fig. 1(b). In this problem, the motion of the
robot is modeled by Eq. (15) with rr¼ 0, which is the determinis-
tic model, while the target motion is modeled as dxT¼rTdw,
dyT¼ rTdw. Now, we use the distance between the robot and the

target r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xx � xTð Þ2þ xy � yT

� �2
q

and the bearing angle a (see

Fig. 1(b)) to define the cost function

J uð Þ ¼ E

ð1
0

e�bt r � dð Þ2dt

	 

(20)

which is defined on the infinite time horizon and includes the dis-
counting factor e�bt. To keep a constant distance, i.e., r¼ d, we
compute an optimal control that minimizes the cost function (20).
All details on how to compute this control are provided in
Ref. [38], and here, we provide only major points. First, we apply
the Îto chain rule to derive the SDE describing evolution r and a,
which is

dr ¼ �� cos aþ r2
T

2r

� �
dtþ rTdwr

da ¼ �

r
sin a� u

� �
dtþ rT

r
dwn

where dwr and dwn are the Wiener process increments along the
robot-target direction and normal to it, respectively. The HJB
equation in this case is

0 ¼ min
u

b1

@V

@r
þ b2 uð Þ @V

@a
þ r2

T

2

@2V

@r2
þ r2

T

4r2

@2V

@a2
� bV r; að Þ

	 


with b1 ¼ ��cosaþ r2
T=ð4r2Þ and b2 uð Þ ¼ ð�=rÞ sin a� u, where

the bV(r, a) term is the consequence of the discounting factor
e�bt. The discretization procedure and the value iteration step are
the same as in the previous example, except that in this case the
boundaries for rmin and rmax are both reflective.

For the problem parameters b¼ 1, d¼ 50 rT¼ 5 and the
discretization parameters rmin¼ 10, rmax¼ 90, Dr¼ 0.4, and
Da¼ 2p/361, we obtain the results presented in Fig. 3. Our com-
putations again result in a control u that is bang-bang. It is worth
mentioning, based on the results presented in Ref. [38], that the
slope of the curved line separating different values of the control
depends on the intensity of the noise scaling parameter rT.

4 Spatiotemporal Models

In this section, we discuss a series of spatial or spatiotemporal
models, which can be used to model uncertain environments
for mobile sensor networks as well as approximate the value func-
tion for optimal control. To this end, we introduce parametric,
nonparametric, empirical Bayes, and fully Bayeisan approaches
[16–18,26–28].

4.1 Parametric Approach. Among phenomenological spatial
models, the simplistic model is a static spatial field that could be
modeled by a network of basis functions. A measurable environ-
mental variable l at x2 X location could be modeled by

l xð Þ :¼
Xm

j¼1

fj xð Þbj ¼ f T xð Þb (21)

where f T xð Þ and b are defined, respectively, by

f xð Þ :¼ f1 xð Þ � � � fm xð Þ½ �T2 Rm; b :¼ b1 � � � bm½ �T 2 Rm

For example, the basis function could take a Gaussian function

fj xð Þ :¼ ð1=ZÞ expð�kx� cjk2=r2
j Þ, where cj and rj are the center

location and the width of the basis function, respectively.
Adaptive control of multiple robotic sensors based on the para-

metric model in Eq. (21) can be designed as a sum of swarming
and gradient ascent efforts as follows:

Fig. 3 Solution of the distance keeping control problem (P2):
(left panel) gray colored map of the value function V(r, a); darker
shades correspond to smaller values of V(r, a) and lighter
shades depict its larger values. The type of the boundary condi-
tions are labeled by P—periodic, R—reflective; (right panel)
optimal feedback control, white u 5 1 and gray u 5 2 1.

Fig. 2 Solution of the minimum expected time problem (P1):
(left panel) gray colored map of the value function V(r, a); black
color at the absorbing boundary (A) indicates V(r, a) 5 0 and the
lighter shades depict longer expected times. The type of the
boundary conditions is labeled by P—periodic, R—reflective,
A—absorbing; (right panel) optimal feedback control; white
u 5 1 and gray u 5 –1.
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dq ið Þ

dt
¼ p ið Þ

dp ið Þ

dt
¼ us q ið Þ; p ið Þ

� �
� e1p ið Þþe2f 0T q ið Þ

� �
b̂i tð Þ

(22)

where q(i) and p(i) denote the position and velocity of agent i.
ei> 0 are gain factors. us(�, �) denotes the swarming effort [39]
and f 0(x*) is the partial derivative of f(x) with respect to x*. Note

that b̂i tð Þ is updated based on the recursive least squares estimator
using locally collected measurements [16,39]. The multiagent
system under distributed control in Eq. (22) locates peaks of an
uncertain static field as shown in Fig. 4. However, the control in
Eq. (22) needs a persistent excitation condition for convergence
of regression coefficients in b [16,39] (Fig. 4), while control
strategies based on Bayesian spatial models do not require such
conditions, (e.g., by utilizing priori distributions as in Kalman
filtering [15] or Gaussian process regression [17]). Hence, control
engineers become more aware of the usefulness of nonparametric
Bayesian approaches such as Gaussian processes [40,41] to statis-
tically model physical phenomena for the navigation of mobile
sensor networks [14,17,23–27,42,43]. A Gaussian process is an
elegant way of defining prior distributions for data-driven and
flexible regression. We review models based on Gaussian process
regression in Sec. 4.2.

4.2 Nonparametric Approach: Gaussian Processes. A
Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution [41,44]. A
Gaussian process at a point x2 X can be defined by a mean
function l xð Þ :¼ E z xð Þ½ � and a covariance function C x; x0ð Þ
:¼ E z xð Þ � l xð Þð Þ z x0ð Þ � l x0ð Þð Þ½ �, where x; x02 X, which is
denoted by

z xð Þ � GP l xð Þ;C x; x0ð Þð Þ (23)

For example, a point x in (d-dimensional) space and time takes

x :¼ s; tð Þ 2Rdþ1, where s2Rd and t> 0. The Gaussian process
in Eq. (23) is a prior over the function z(x) and will be used for
Bayesian regression of z(x) for the given measured data. Before
the data are collected, the Gaussian process prior provides the
uncertainty about the unobserved function z(x). After observing
the data, our belief on z(x) shall be updated as a conditional
probability distribution of z(x) for the given data. The conditional

probability distribution of z on x�, which is not measured, is called
a posterior predictive distribution.

A mean function may take a form of Eq. (21), and a covariance
function could take a form of the squared exponential covariance
function

C x; x0ð Þ ¼ r2
f exp � 1

2
x� x0k k2

R�1
b

� �
(24)

x� x0k k2
R�1

b
is the weighted vector norm of x – x0 with a weight (of

bandwidths) R�1
b such that

x ¼ x0k k2
R�1

b
:¼ x� x0ð ÞTR�1

b x� x0ð Þ

When d¼ 2, Rb can be parameterized by a vector h.

Rb hð Þ ¼ r2
1 0

0 r2
2

 �
; h :¼ r2

1 r2
2

� �
(25)

A covariance function for a spatiotemporal Gaussian process
can take the following form:

C x; x0ð Þ ¼ r2
f Corr x; x0ð Þ ¼ r2

f Corrs
s� s0k k

rs

� �
Corrt

t� t0j j
rt

� �

where Corrs(�) and Corrt (�) are the spatial and time correlation
functions, respectively. Here, we have h :¼ rs;rtð ÞT 2R2.

If a covariance function is valid, it must result in a positive defi-
nite covariance matrix for any set of sampling points. This can be
shown by considering an arbitrary collection

�
z
�
xð1Þ
�
;…; z

�
xðnÞ
��

of random variables from a Gaussian process with covariance
function C(x,x0). For arbitrary real numbers {c1, …, cn} we then
have

Var c1z x 1ð Þ
� �

þ � � � þ cnz x nð Þ
� �h i

¼
Xn

i¼1

Xn

j¼1

cicjC x ið Þ; x jð Þ
� �

> 0

If the covariance function is invariant to translations in the input
space, i.e., C(x, x0)¼C(x–x0) we call it stationary. Furthermore, if
the covariance function is a function of only the distance between
the inputs, i.e., C x; x0ð Þ ¼ C x� x0k kð Þ then it is called isotropic.
For a review of covariance functions, the reader is referred to
Refs. [41] and [45].

Suppose we have n sampling positions and the associated

noise-corrupted observations D :¼ x ið Þ; y ið Þ� �
ij ¼ 1;…; n

� �
, and

the measurement noise is given such that yjz � N z;r2
wI

� �
. Then

the collection of observations y ¼ y 1ð Þ � � � y nð Þ� �T 2Rn has the

Gaussian distribution

y � N l;Cy

� �
where li :¼ l x ið Þ� �

, and Cy

� �
ij

:¼ C x ið Þ; x jð Þ� �
þ r2

wI.

The objective of Gaussian process regression is to compute the
posterior predictive distribution of the function values z� :¼ z x�ð Þ
at a target point x� for given observations D. This posterior pre-
dictive distribution is a Gaussian distribution as follows:

z� D � N lz� Dj ;r
2
z� Dj

� ���� (26)

where the prediction of z� is given by

lz� Dj ¼ l x�ð Þ þ kTC�1
y y� lð Þ (27)

Fig. 4 Each agent is driven by swarming and gradient ascent
efforts based on its own recursively estimated field (with a
model in Eq. (21)) via locally collected measurements by itself
and its neighboring agents. The multiagent system locates
peaks of an uncertain static field in a distributed and scalable
manner [39].
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here k is the covariance between z and z� obtained by
kð Þi¼ C x ið Þ; x�

� �
. The prediction error variance of z� is given as

r2
z� Dj ¼ C x�; x�ð Þ � kTC�1

y k ¼ r2
f � kTC�1

y k (28)

Note that both Eqs. (27) and (28) have complexity O(n3) due to
C�1

y . Thus, it is difficult for resource-constrained robots to use
Gaussian process regression in Eq. (27) since it is not scalable
as the number of observations n increases. For various topics on
flexible and efficient Gaussian process regression, see Ref. [46]
and references therein. Distributed coordination of mobile sensor
networks under the limited communication range using truncated
observations is proposed in Ref. [17]. Mobile sensing agents with
the distributed navigation strategy produce an emergent, swar-
minglike, collective behavior for communication connectivity and
are coordinated to improve the quality of the collective prediction
capability.

The quality of the prediction over a collection of target
points T can be measured by the averaged prediction error var-
iance over T and agents which is a function of sampling posi-

tions q ¼ col q 1ð Þ;…; q nð Þ� �
.

J qð Þ :¼ 1

n

X
i

1

Tj j
X
x2T

r2 ið Þ
z xð Þ D ið Þj q ið Þ

� �
(29)

where |T| is the cardinality of T. Superscript i is given to local pre-
diction error variance based on local data from agent i. Note that J
in Eq. (29) is a function of q not of observations y. This implies
that we can minimize the cost function J over possible sampling
positions q of robotic sensors without taking any actual measure-
ments when the mean and covariance functions of the Gaussian
process in Eq. (23) are perfectly known.

4.3 Selection of Gaussian Process Prior. In this subsection,
we illustrate the importance of selecting a Gaussian process
prior via hyperparameters when we make an inference from the
experimental data. To have illustrative cases, we consider the
experimental data collected by the robotic boat (see Fig. 5(a)) that
was deployed in a private pond in Lansing, MI. Similar robotic
boats were used to sample the environmental variables [20,47,48].
A set of water depth values and sampling locations were collected
from on-board sensors in the robotic boat. Fig. 5(b) shows the
location site with sampling locations shown in colored dots. With-
out loss of generality, the global positioning system (GPS) data, in
particular the longitude and latitude, are normalized to [0, 1]. Let
us assume that the process has a known constant mean so that we
only care to select the covariance function. With the squared ex-
ponential covariance function in Eqs. (24) and (25), i.e.,

C x; x0; hð Þ ¼ r2
f exp �

X2

‘¼1

1

2

x‘ � x0‘
� �2

r2
‘

( )
;

the estimated depth field and the prediction error variance with
different hyperparameters are shown in Figs. 6 and 7, respec-
tively. With different bandwidths (or length scales) r1 and r2

while keeping other parameters fixed on the same values, the pre-
diction and its prediction error variance on the same experimental
data are significantly different. With smaller bandwidths, the pre-
dicted depth field is much more wiggly and wavy than its counter-
part (Figs. 6(a) and 7(a)). Very large values of the bandwidths
imply that the depth value is expected to be constant with respect
to different locations. As shown in Figs. 6 and 7, the Gaussian
process with smaller bandwidths (and weaker spatial correlations)
allows much more complicated spatial details and needs to be
densely sampled. On the other hand, the Gaussian process with
larger bandwidths (and stronger spatial correlations) tends to be
smooth and does not need dense sampling for a decent level of

prediction quality as shown in Fig. 7. From these findings, we rec-
ognize the importance of the choice of the covariance function to
make precise prediction as well as schedule the sampling in an
optimal way. More discussions on the selection of covariance
functions from a Bayesian perspective can be found in Ref. [44].

4.4 Empirical Bayes Approach. When mean and covariance
functions are not known, they need to be estimated from the
experimental observations. Consider a case where the mean func-
tion is known and the covariance function needs to be estimated.
For given collected data, hyperparameters / of the covariance
function in Eq. (24), i.e., / :¼fr2

f ; hg, can be estimated by an
empirical Bayes method. The estimated parameters can be consid-
ered as true ones and we can then proceed to make inferences
using Eq. (26). The point estimator of / can be obtain by maxi-
mizing the likelihood function, i.e., L / yjð Þ ¼ p y /jð Þ. The
maximum likelihood (ML) estimate /ML is then defined as

/̂ML ¼ arg max
/2U

L / yjð Þ ¼ arg max
/2U

log L / yjð Þ

Note that it is convenient to use the log likelihood function

log L / yjð Þ ¼ � 1

2
y� lð ÞTC�1

y y� lð Þ � 1

2
log det Cy

� �
� n

2
log 2p

If the prior distribution p(/) is available, we could seek for the
maximum a posteriori (MAP) estimate /̂MAP.

Fig. 5 (a) Remotely controlled boat equipped with depth
sensor and GPS and (b) experiment site with the sampling loca-
tions (shown as colored dots)
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/̂MAP ¼ arg max
/2U

log p y /jð Þp /ð Þ½ �

¼ arg max
/2U

log L / yjð Þ þ log p /ð Þ½ �

Gradient-based optimization techniques (e.g., the conjugate
gradient method) could find the point estimators using the partial
derivative of L / yjð Þ with respect to /i.

@ log L / yjð Þ
@/i

¼ 1

2
y� lð ÞTC�1

y

@Cy

@/i

C�1
y y� lð Þ � 1

2
tr C�1

y

@Cy

@/i

� �

The aforementioned methods can be easily extended for a case
where both the mean and covariance functions need to be esti-
mated. Mobile sensor agents can be moved in order to maximize
the information contained in the observations for estimating
hyperparameters [49]. The cost function for mobility could be
selected according to D-optimality: J qð Þ :¼ log det M�1 q; /ð Þð Þ or
A-optimality: J qð Þ :¼ tr M�1 q; /ð Þð Þ where M is the Fisher infor-
mation matrix.

M q; /ð Þ½ �ij¼ �E
@2L / yjð Þ
@/i@/j

 !

Such criteria are popular choices for optimal experimental design
since the Cramer–Rao lower bound (CRLB) theorem states

E½ð/̂� /Þð/̂� /ÞT � 	 M�1. In fact, M is not only a function of
sampling points q but also that of the true parameters /. There-
fore, a good initial guess needs to be plugged in for optimization.

4.5 Fully Bayesian Approach. While this empirical Bayes
method is quite practical to use, the point estimate (ML or MAP
estimate) itself needs to be identified a priori and it does not fully
incorporate the uncertainty in the estimated hyperparameters into
the prediction in a fully Bayesian perspective. The advantage of a
fully Bayesian approach is that the uncertainty in the model
parameters are incorporated in the prediction [50]. The main dif-
ference is that in a fully Bayesian approach, unknown hyperpara-
meters are considered as random variables while they are
considered as unknown constants for a frequenist point of view.

In this subsection, to present a fully Bayesian approach, we
treat unknown b, r2

f , and h as random variables. Therefore, we
define the prior distribution reflecting the a priori belief of uncer-
tainty for them.

p b;r2
f ; h

� �
¼ p b r2

f

���� �
p r2

f

� �
p hð Þ (30)

where bjr2
f � Nðb0; r

2
f TÞ and r2

f � IG a; bð Þ which is taken to be
the inverse gamma distribution, chosen to guarantee positiveness
of r2

f and a closed-form expression for the posterior distribution
of r2

f for computational ease of the method. In case there is no
prior information about b, noninformative prior can be used in a

Fig. 7 Prediction with hyperparameters rf 5 0.2, r1 5 0.2, r2 5 0.
2, and rw 5 0. 03. (a) Estimated depth and (b) prediction error
variance, with sampling positions shown as white crosses.

Fig. 6 Prediction with hyperparameters rf 5 0.2, r1 5 0.07,
r2 5 0. 07, and rw 5 0. 03. (a) Estimated depth and (b) prediction
error variance, with sampling positions shown as white crosses.
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Bayesian perspective. This case, let b0¼ 0, and T¼ aI, subse-
quently, let a!1.

The posterior distribution due to the Bayes rule is then given by

p b;r2
f ; h yj

� �
¼

p y b; r2
f ; h

���� �
p b;r2

f ; h
� �

ððð
p b;r2

f ; h
� �

p b;r2
f ; h

� �
dbdr2

f dh
(31)

Since there is no analytical solution to compute (31), a Markov-
chain Monte Carlo (MCMC)-based approach [51] can be used to
make inference. For example, a Gibbs sampler can be use to com-
pute Eq. (31). The inference on b, r2

f , and h can be carried out by
sampling from the posterior distribution in Eq. (31) via the Gibbs
sampler as shown in Table 1. The derivation of the conditional
distributions in Table 1 can be found in Ref. [52].

For this MCMC-based approach, the posterior predictive distri-
bution can be written by

p z�jyð Þ ¼
ððð

p z�jy;b;r2
f ; h

� �
p b;r2

f ; hjy
� �

dbdr2
f dh

Note that the predictive distribution for given b; r2
f ; h; and y is

given by

z�jb;r2
f ; h;y � N lz�jb;r2

f
;h;y;r

2
z�jb;r2

f
;h;y

� �
;with

lz�jb;r2
f
;h;y ¼ E z�jb;r2

f ; h;y
� �

¼ f x�ð ÞTbþ kTC�1
y y� Fbð Þ;

r2
z�jb;r2

f
;h;y ¼ Var z�jb;r2

f ; h;y
� �

¼ r2
f � kTC�1

y k

F is defined as F :¼ ½f ðxð1ÞÞ � � � f ðxðnÞÞT � 2 Rn�m.

Now approximated posterior predictive distribution can be
computed using samples drawn from the Gibbs sampler

p z�jyð Þ � 1

m

Xm

i¼1

p z�jy; b ið Þ;r2 ið Þ

f ; h ið Þ
� �

where b(i), r2 ið Þ
f , and h(i) are drawn from the Gibbs sampler given

in Table 1. Posterior predictive mean and variance can then be
obtained as follows:

lz�jy ¼ E z�jyð Þ � 1

m

Xm

i¼1

l
z�jb ið Þ;r2 ið Þ

f
;h ið Þ;y

:

r2

z�jy
¼ Var z�jyð Þ � 1

m

Xm

i¼1

r2

z�jb ið Þ;r2 ið Þ
f
;h ið Þ;y

þ 1

m

Xm

i¼1

l
z�jb ið Þ;r2 ið Þ

f
;h ið Þ;y
� lz�jy

� �2

4.5.1 The MCMC-Based Solution to a 1D Example. Let us
consider a scenario in which five robots sample the spatiotemporal

Gaussian process in a 1D space and the central station performs
Bayesian prediction. The signal-to-noise ratio is set to be 26 dB,
which corresponds to rw¼ 0.05. The true values for the para-
meters used in simulating the Gaussian process are given by

[b r2
f rs rt]

T¼ [0 1 2 8]T for a squared exponential function

CorrsðhÞ ¼ � 1
2

h2 and a compactly supported correlation function

for time Corrt (h) used in Ref. [26]. Notice that the dimension of
the regression coefficient b is assumed to be one, i.e., the mean
function is assumed to be an unknown random variable. We

assume that bjr2
f has the uninformative prior and r2

f � IG 3; 20ð Þ.
The Gibbs sampler in Table 1 was used to generate samples from
the posterior distribution of the parameters. A random sampling
strategy was used in which robots make observations at random
locations at each time step.

The histograms of the samples at time t1 and t10 are shown in
Figs. 8(a) and 8(b), respectively. It is clear that the distributions
of the parameters are centered around the true values with 100
observations at time t20. The prediction results at time t1 and t20

are shown in Figs. 9(a) and 9(b), respectively. However, with
only 100 observations, the running time using the full Bayesian
approach is about several minutes, which will soon become intrac-
table as the number of observations increases.

4.6 Efficient Fully Bayesian Methods. While this fully
Bayesian approach is flexible and truly adaptive to collected data,
MCMC methods are not suitable for resource-constrained mobile
robots due to the high computational complexity. Some efforts
made to derive methods without resorting to MCMC methods are
discussed in Ref. [26]. In Ref. [24], an iterative prediction algo-
rithm without resorting to MCMC methods was developed based
on analytical closed-form solutions from Ref. [53], by assuming
that the bandwidths in h in the covariance function of the

Fig. 8 The posterior distribution of b, r2
f , rs , and rt at (a) t1 and

(b) t20

Table 1 A Gibbs sampler

Input: Initial samples b(1), r2 1ð Þ
f , and h(1)

Output: Samples b ið Þ;r2 ið Þ
f ; h ið Þ

n om

i¼1
from joint distribution p b;r2

f ; hjy
� �

1: Initialize b(1), r2 1ð Þ

f ,h(1)

2: for i¼ 1 to m do

3: sample b(iþ1) from pðbjr2 ið Þ

f ; h ið Þ; yÞ
4: sample r2 iþ1ð Þ

f from pðr2
f jb

iþ1ð Þ; h ið Þ; yÞ
5: sample h(iþ1) from pðhjb iþ1ð Þ; r2 iþ1ð Þ

f ; yÞ
6: end for
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Gaussian random field are known a priori. In Refs. [26] and [51],
a sequential Bayesian prediction algorithm was developed to deal
with unknown bandwidths by using a compactly supported kernel
and selecting a subset of collected measurements. For a special
case, a distributed implementation of sequential Bayesian predic-
tion algorithms was proposed for mobile sensor networks. An
adaptive sampling strategy for mobile sensors, using MAP estima-
tion, was proposed to minimize the prediction error variances [26].

Other more data-driven approaches have also developed (with-
out a statistical structure used in Gaussian processes) such as
using kernel regression [28] and in reproducing kernel Hilbert
spaces [29].

Recently, there have been efforts to fit a computationally effi-
cient GMRF on a discrete lattice to a Gaussian random field on a
continuum space [54–56]. It has been demonstrated that GMRFs
with small neighborhoods can approximate Gaussian fields sur-
prisingly well [54]. This approximated GMRF and its regression
are very attractive for the resource-constrained mobile sensor net-
works due to its computational efficiency and scalability [57] as
compared to the standard Gaussian process and its regression.
Fast kriging of large data sets by using a GMRF as an approxima-
tion of a Gaussian field has been proposed in Ref. [56]. In
Ref. [27], the authors provided a new class of Gaussian processes
that builds on a GMRF and derived the formulas for predictive
statistics. However, they both assume the precision matrix (i.e.,
the inverse of the covariance matrix) is given or estimated a priori.
In a recent work of Ref. [18], a discretized spatial random field
was modeled by a GMRF with uncertain hyperparameters. From a
fully Bayesian perspective, a sequential prediction algorithm was
designed to exactly compute the predictive inference of the ran-
dom field. Additionally, the proposed algorithm in Ref. [18] has

the computational efficiency due to the sparse structure of the pre-
cision matrix, and the scalability as the number of measurements
increases.

4.7 Gaussian Processes for Machine Learning (GPML)
Toolbox. To jump-start spatial modeling, the readers are encour-
aged to use the GPML toolbox [58], which has originally grown
from the book on Gaussian processes [41]. The GPML toolbox
can be downloaded.2 The GPML toolbox provides a large scope
of useful MATLAB functions, for example, to build complex mean
and covariance functions from simple ones for Gaussian process
inference. It also provides various inference methods including
exact and variational inference, expectation propagation [59],
Laplace’s method [60], and other useful techniques to deal with
large scale data.
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