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State-feedback gain-scheduling controller synthesis with guaran-
teed performance is considered in this brief. Practical assumption
has been considered in the sense that scheduling parameters are
assumed to be uncertain. The contribution of this paper is the
characterization of the control synthesis that parameterized linear
matrix inequalities (PLMIs) to synthesize robust gain-scheduling
controllers. Additive uncertainty model has been used to model
measurement noise of the scheduling parameters. The resulting
controllers not only ensure robustness against scheduling param-
eters uncertainties but also guarantee closed-loop performance in
terms of H2 and H1 performances as well. Numerical examples
and simulations are presented to illustrate the effectiveness of the
synthesized controller. Compared to other control design methods
from literature, the synthesized controllers achieve less conserva-
tive results as measurement noise increases.
[DOI: 10.1115/1.4031727]

1 Introduction

In the vast majority of the existing works in gain-scheduling
control community, it is implicitly assumed that exact measure-
ment of scheduling parameters is available in real-time. Since
uncertainties in scheduling parameters are unavoidable, perfect
measurement is impossible to obtain in practical control applica-
tions. Several articles in literature dealt with the synthesis of stabi-
lizing controllers for linear parameter varying (LPV) systems but
only few techniques have been reported to cope with uncertainties
associated with scheduling parameters. A gain-scheduling design
method proposed in Ref. [1] to handle uncertainties in schedul-
ing parameters. However, their method cannot cope with addi-
tive errors since the uncertainty was assumed to be proportional
to the true scheduling parameters. Moreover, only the dynamic
matrix was assumed to be affected by the time-varying parame-
ters. Then, quadratic stability approach was used to address this
control problem in Ref. [2]. However, it is well-known that such
approach is extremely conservative and certain systems are not

even quadratically stabilizable [3]. As a remedy to quadratic
stability approach, parameter-dependent Lyapunov approach is
used in Refs. [4,5]. However, some of the system matrices are
restricted to be constant in Ref. [5] for controller synthesis. In
Ref. [6], new approach is developed to handle uncertainties in
scheduling parameters for filter design problem. Similar
approach is used in Ref. [7] to synthesize gain-scheduling con-
trol via two stages design method; where in the first stage, stabi-
lizing (state-feedback) controller is designed, and then the
resulting controller is used in the second stage to synthesize
output-feedback controller. PLMIs synthesis conditions for H2

dynamic output-feedback controller have been developed in
Ref. [8].

The main contribution of this paper is the characterization of
the control synthesis PLMIs to synthesize robust gain-scheduling
controllers when scheduling parameters are not exact for state-
feedback case. In other words, PLMIs conditions are derived to
synthesize robust gain-scheduling controller with guaranteed
closed-loop performance in terms of H2 and H1 norms2. Affine
LPV systems are studied in this brief. Multisimplex modeling
approach [9] has been utilized to model the scheduling parame-
ters and their uncertainties. Matrix coefficient check relaxation
approach [10] is used to relax the PLMIs conditions. To over-
come conservativeness associated with quadratic stability
approach, parameter-dependent Lyapunov function approach has
been studied to assess stability and improve performance meas-
ures. Slack variable (SV) approach has been used to introduce
additional optimization variables that decouple Lyapunov matrix
from system matrices; thus, the controller can be synthesized in-
dependently from Lyapunov matrix. Following some notions
that exist in the literature [11], line search with a scalar parame-
ter has been used as an extra degree-of-freedom to improve con-
troller performance. Compared to other design methods from
literature, the synthesized controllers achieve very competitive
results.

This paper is organized as follows: Problem formulation of the
uncertain scheduling parameters is given in Sec. 2. Section 3
presents the modeling approach. Controller synthesis PLMIs con-
ditions are given in Sec. 4. Section 5 presents numerical examples,
simulations, and comparisons with other methods from literature.
Finally, conclusions are given in Sec. 6.

2 Problem Formulation

Consider the following LPV system:

_xðtÞ ¼ AðhðtÞÞxðtÞ þ BuðhðtÞÞuðtÞ þ BwðhðtÞÞwðtÞ
zðtÞ ¼ CðhðtÞÞxðtÞ þ DuðhðtÞÞuðtÞ þ DwðhðtÞÞwðtÞ

(1)

where xðtÞ 2 Rn is the state, wðtÞ 2 Rr is the disturbance input,
zðtÞ 2 Rp is the controlled output with the following matrices
AðhðtÞÞ 2 R n� n; BuðhðtÞÞ 2 Rn�m; BwðhðtÞÞ 2 Rn�r; CðhðtÞÞ
2 Rp�n; DuðhðtÞÞ 2 Rp�m, and DwðhðtÞÞ 2 Rp�r . The system
matrices in Eq. (1) are assumed to be affine parameter-dependent,
i.e., each of these matrices can be represented by the following
parametrization:

AðhðtÞÞ ¼ A0 þ
Xq

i¼1

hiðtÞAi (2)
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2To be precise, since we are dealing with LPV systems, the H2 and H1
performance is not well defined in the addressed problem yet. However, we use H2

and H1 norm here with slightly abused terminology so that the reader can easily
grasp our problem setting. We will postpone the strict definition of the control
problem until the end of Sec. 3 since necessary definitions and transformations need
to be introduced in Sec. 2 .
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The scheduling parameter vector, defined as

hðtÞ ¼ ½h1ðtÞ; h2ðtÞ;…; hqðtÞ�0

is assumed to be inexactly measured or corrupted with noise
denoted by ~hðtÞ, such that

~hiðtÞ ¼ ðhiðtÞ þ diðtÞÞ; i ¼ 1; 2;…; q (3)

where di(t) represents uncertainty in the scheduling parameters
and hi(t) is the actual value. These parameters and their uncertain-
ties assumed to have the following known bounds:

��hi � hiðtÞ � �hi ;��di � diðtÞ � �di ; i ¼ 1; 2;…; q (4)

Furthermore, these parameters have their rates of variations
bounded by

�bhi
� _hiðtÞ � bhi

; �bdi
� _diðtÞ � bdi

; i ¼ 1; 2;…; q (5)

where each scheduling parameter and the associated uncertainty
have a different rate of variation. Without loss of generality, these
bounds have been assumed to be symmetric.

The goal is to synthesize gain-scheduling state-feedback con-
troller of the form

uðtÞ ¼ Kð~hðtÞÞxðtÞ (6)

where ~hðtÞ ¼ hðtÞ þ dðtÞ that stabilizes the closed-loop system
while minimizing the H2 or H1 performance costs from the dis-
turbance input w(t) to the controlled output z(t), where

~hðtÞ ¼ ½~h1ðtÞ; ~h2ðtÞ;…; ~hqðtÞ�;
dðtÞ ¼ ½d1ðtÞ; d2ðtÞ;…; dqðtÞ�

Furthermore, the controller should be robust against the uncer-
tainties associated with the scheduling parameters as well. By sub-
stituting Eq. (6) in Eq. (1), we obtain the following closed-loop
system:

_xðtÞ ¼ AclðhðtÞ; ~hðtÞÞxðtÞ þ BwðhðtÞÞwðtÞ;
zðtÞ ¼ CclðhðtÞ; ~hðtÞÞxðtÞ þ DwðhðtÞÞwðtÞ

(7)

where3

AclðhðtÞ; ~hðtÞÞ ¼ AðhðtÞÞ þ BuðhðtÞÞKð~hðtÞÞ;
CclðhðtÞ; ~hðtÞÞ ¼ CðhðtÞÞ þ DuðhðtÞÞKð~hðtÞÞ

(8)

Some terminologies and definitions are necessary to introduce
now, since it will be used in Secs. 3–5.

DEFINITION 1. Unit-simplex [9]: a unit-simplex is defined as
follows:

K‘ ¼ a 2 R‘ :
X‘
i¼1

ai ¼ 1; ai � 0; i ¼ 1; 2;…; ‘

( )

where the variable ai varies in the unit-simplex K‘ that have ‘
vertices.

DEFINITION 2. Multisimplex [12]: a multisimplex K is the Carte-
sian product of a finite number of q simplexes that

KN1
� KN2

� � � � � KNq
¼
Yq

i¼1

KNi
¢K

The dimension of the multisimplex K is defined as the index
N¼ (N1, N2,� � �, Nq) and for simplicity of notation, RN denotes for
the space RN1þN2þ���þNq . Thus, any variable a in the multisimplex
domain K can be decomposed as (a1, a2,…, aq), and each ai,

belonging into a unit-simplex KNi
, can be decomposed as

ðai1; ai2;…; aiNi
Þ for i¼ 1, 2,…, q.

3 The Modeling Approach

In this section, systematic approach will be given to convert the
scheduling parameters and the uncertainties from their original
parameter space into multisimplex domain. Most of the notations
and steps presented in this section are borrowed from Ref. [6].

3.1 Affine to Multisimplex Transformation. The objective
of this change of variables is to construct a new convex parameter
space to deal with the uncertainties in the scheduling parameters.
Since we have di associated with each hi that needs to be modeled
in convex domain, we have two unit-simplexes, one for the actual
scheduling parameter and the other one for its uncertainty. Note
that since all time-varying parameters are assumed to be bounded
above and below, all resulting unit-simplexes have two vertices,
i.e., K2. Thus, each of the varying parameters (hi and di) will be
modeled independently in its own simplex as follows [6]:

(1) Actual scheduling parameters (hi) ai)

ai1 ¼
hi þ �hi

2�hi

) hi ¼ 2�hiai1 � �hi (9)

ai2 tð Þ ¼ 1� ai1 tð Þ ¼ 1� hi tð Þ þ �hi

2�hi

¼
�h i � hi tð Þ

2�hi

ai ¼ ðai1; ai2Þ 2 K2; 8i ¼ 1; 2;…; q

(2) Uncertainties ðdi ) âiÞ

âi1 ¼
di þ �di

2�di

) di ¼ 2�diâi1 � �di (10)

âi2 tð Þ ¼ 1� âi1 tð Þ ¼ 1� di tð Þ þ �di

2�di

¼
�di � di tð Þ

2�d i

âi ¼ ðâi1; âi2Þ 2 K2; 8i ¼ 1; 2;…; q

Thus, using this change of variables, the original affine
parameter-dependent system (1) as well as the gain-scheduling
controller (6) can be expressed in terms of a multisimplex varia-
bles that blend the time-varying parameters and the uncertainties
together in a convex domain. Therefore, the multisimplex
variables ~a can be defined as ~a ¼ ða; âÞ, with
~a 2 K ¼ K2 � K2 � � � � � K2.

Consider the case where q¼ 1 (one scheduling variable) for
instance, a1¼ (a11, a12) and â1 ¼ ðâ11; â12Þ, then the homogene-
ous terms in the multisimplex variables can be written in terms of
these variables as ~a ¼ ða11; a12; â11; â12Þ.

Let Fð~hÞ represents the controller matrix in Eq. (6) (or any of
the optimization matrices that will be given shortly in Theorems 5
and 6) that have affine dependence on the measured parameter ~h
as

Fð~hÞ ¼ F0 þ ~h1F1 ¼ F0 þ ðh1 þ d1ÞF1 (11)

Note that the controller is implemented in real-time using the
structure of Eq. (11) that requires only sensor measurement of ~h.
Substituting for h1 and d1 from Eqs. (9) and (10) yields

Fð~hÞ ¼ F0 þ ð2�h1a11 � �h1 þ 2�d1â11 � �d1ÞF1 ¼ Fð~aÞ (12)

as a result, Fð~aÞ is a parameter-dependent matrix that depends on
time-varying parameters inside the multisimplex domain K. Then,
applying homogenization procedure that developed in Ref. [9] to
obtain

Fð~aÞ ¼ a11â11F1;1 þ a11â12F1;2 þ a21â11F2;1 þ a21â21F2;2 (13)3The dependency on t will be omitted for notational simplicity.
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where the matrices F1,1, F1,2, F2,1, and F2,2 can be generated as

F1;1 ¼ F0 þ ð�h1 þ �d1ÞF1;

F1;2 ¼ F0 þ ð�h1 � �d1ÞF1;

F2;1 ¼ F0 þ ð��h1 þ �d1ÞF1;

F2;2 ¼ F0 þ ð��h1 � �d1ÞF1

(14)

This procedure can be systematically extended to handle all sys-
tem matrices and optimization variables to be dependent on the
multisimplex parameters ~a ¼ ða; âÞ for any number of scheduling
variables q� 1. The matrices Fji;ki

in Eq. (14) for ji¼ 1, 2 and
ki¼ 1, 2 can be generated systematically as

Fji;ki
¼ F0 þ

Xq

i¼1

ð�1Þjiþ1�h i þ ð�1Þkiþ1�di

n o
Ki (15)

Remark 1. The system matrices in Eq. (1) depend only on the
true scheduling parameters hi(t). However, the same procedure
described above could be used to convert them into multisimplex
domain by imposing �di ¼ 0 in Eq. (15) to obtain
Að~aÞ; Bwð~aÞ; Buð~aÞ; Cð~aÞ; Dwð~aÞ, and Duð~aÞ.

3.2 Rate of Variation Modeling. The rates of change of each
parameter and uncertainty are assumed to be bounded as in Eq.
(5) for all t� 0. Since each varying parameter belongs to a unit-
simplex, it is clear that the following relation should be satisfied:

_ai1ðtÞ þ _ai2ðtÞ ¼ 0 i ¼ 1; 2;…; q (16)

The relationship between the bounds of the rates of variations of
scheduling parameters and the rates of changes of multisimplex
variables can be obtained using Eqs. (5) and (9) to be

�bhi

2�hi

� _ai1 �
bhi

2�hi

with _ai2 ¼ � _ai1 as the consequence of Eq. (16). Therefore, the
transformation of the rate of the variations to the multisimplex
domain is exact. The derivative of âi can be modeled via the same
procedure using the bounds on the uncertainties �di.

Since ai(t) � K2 and âiðtÞ 2 K2, the time derivatives of the
parameters ai can assume values that modeled by a convex poly-
tope Xi [13]. Given the bounds bhi

and bdi
in Eq. (5), the matrices

Hi (of size 2� 2) can be constructed such that Xi is defined as

Xi ¼ / 2 R2 : / ¼
X2

k¼1

gikH
ðkÞ
i ; gi 2 K2

( )
i ¼ 1; 2;…; 2q

(17)

where H
ðkÞ
i represents the kth column of matrix Hi. Notice that,

due to Eq. (16), the sum of the elements of each column of H
ðkÞ
i is

zero. Therefore,

_~a 2 X ¼ X1 � X2 � � � � � X2q ¼
Y2q

i¼1

Xi (18)

At this point, we are ready to define our control problem
precisely.

Problem 3. Suppose that Dw(h(t))¼ 0 in Eq. (1). For a given
positive scalar �, find a state-feedback controller in the form of
Eq. (6) for any pair ð~a; _~aÞ 2 K� X that stabilizes the closed-loop
system (7) and satisfies

sup
ð~a ; _~aÞ2K�X

E

ðT

0

zðtÞ0zðtÞdt

( )
< �2 (19)

for the disturbance input w(t) given by

wðtÞ ¼ w0 ðt ¼ 0Þ
0 ðt 6¼ 0Þ

�

where w0 is a random variable with Efw0w00g ¼ Ir and E{�}
denotes the mathematical expectation.

Problem 4. For a given positive scalar c1, find a state-feedback
controller in the form of Eq. (6) for any pair ð~a; _~aÞ 2 K� X that
stabilizes the closed-loop system (7) and satisfies

sup
~a; _~að Þ2K�X

sup
w2L2;w6¼0

kzk2

kwk2

< c1 (20)

The next two Lemmas characterize the H2 and H1 perform-
ance indices, respectively.

LEMMA 1. If there exist a continuously differentiable symmetric
positive definite matrix Pð~aÞ 2 Rn�n and parameter-dependent
matrix Wð~aÞ ¼ Wð~aÞ0 2 Rp�p for any pair ð~a; _~aÞ 2 K� X such
that the following PLMIs are satisfied [14]:

Acl ~að ÞP ~að Þ þ P ~að ÞAcl ~að Þ0� @P ~að Þ
@~a

_~a ?

Bw ~að Þ0 �Ir

2
64

3
75 < 0 (21)

Pð~aÞ ?
Cclð~aÞPð~aÞ Wð~aÞ

� �
> 0 (22)

traceðWð~aÞÞ < �2 (23)

then the closed-loop system (7) is exponentially stable with H2

performance bound � satisfies Eq. (19).
LEMMA 2. If there exists a continuously differentiable symmetric

positive definite matrix Pð~aÞ 2 Rn�n for any pair ð~a; _~aÞ 2 K� X
such that the following PLMI satisfied [15]:

Acl ~að ÞP ~að Þ þ P ~að ÞAcl ~að Þ0� @P ~að Þ
@~a

_~a ? ?

Ccl ~að ÞP ~að Þ �Ip ?

Bw ~að Þ0 Dw ~að Þ0 �c2
1Ir

2
6664

3
7775 < 0

(24)

then the closed-loop system (7) is exponentially stable with H1
performance bound c1 satisfies Eq. (20).

Since all scheduling parameters and their uncertainties (with
their rates of variations) have been modeled as multisimplex vari-
ables, we are ready now to derive PLMIs conditions for controller
synthesis which is the main contribution of this brief.

4 Gain-Scheduling Controller Synthesis

In this section, we derive controller synthesis conditions in
terms of PLMIs. Note that, regarding H2 controller synthesis, it
is assumed that Dwð~aÞ ¼ 0 in Eq. (1) so that finite H2 cost can be
obtained.

THEOREM 5. For a given scalar �, if there exist a continuously
differentiable matrix 0 < Pð~aÞ ¼ Pð~aÞ0 2 Rn�n, matrices
Wð~aÞ ¼ Wð~aÞ0 2 Rp�p; Zð~aÞ 2 Rm�n; Gð~aÞ 2 Rn�n, and a sca-
lar e> 0, such that the following PLMIs satisfied:

U1ð~a; _~aÞ ? ?
U2ð~aÞ �eðGð~aÞ þ Gð~aÞ0Þ ?
Bwð~aÞ0 0r�n �Ir

2
64

3
75 < 02nþr (25)

U1 ~a; _~a
� �

:¼ A ~að ÞG ~að Þ þ Bu ~að ÞZ ~að Þ þ G ~að Þ0A ~að Þ0

þZ ~að Þ0Bu ~að Þ0þ @P ~að Þ
@~a

_~a (26)

U2ð~aÞ :¼ Pð~aÞ � Gð~aÞ þ eðAð~aÞGð~aÞ þ Buð~aÞZð~aÞÞ0 (27)
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Gð~aÞ þ Gð~aÞ0 � Pð~aÞ ?
Cð~aÞGð~aÞ þ Duð~aÞZð~aÞ Wð~aÞ

� �
> 0nþp (28)

traceðWð~aÞÞ < �2 (29)

then the gain-scheduling controller

Kð~aÞ ¼ Zð~aÞGð~aÞ�1
(30)

stabilizes the closed-loop system with H2 performance bound �
for any pair ð~a; _~aÞ 2 K� X.

Proof. Using Eq. (17), the time-derivative of Lyapunov matrix
in Eq. (21) can be expressed as

@P ~að Þ
@~a

_~a ¼
X2q

i¼1

X2

j¼1

@P ~að Þ
@~aij

_~aij ¼
X2q

i¼1

X2

j¼1

@P ~að Þ
@~a ij

� gi1Hi j; 1ð Þð

þ gi2Hi j; 2ð ÞÞ :¼ P ~a; gð Þ; gi 2 K2 (31)

Additional SV Xð~aÞ can be introduced using Finsler’s Lemma
[16] to decouple the dynamic matrix Aclð~aÞ from Lyapunov matrix
Pð~aÞ, hence

Wð~aÞ þ Xð~aÞVð~aÞ þ Vð~aÞ0Xð~aÞ0 < 0 (32)

where

Wð~aÞ¢
Pð~a; gÞ Pð~aÞ 0

Pð~aÞ 0 0

0 0 I

2
4

3
5 (33)

Xð~aÞ¢
Gð~aÞ0 0

Rð~aÞ0 0

0 I

2
4

3
5; Vð~aÞ¢ Aclð~aÞ0 �I 0

Bwð~aÞ0 0 �I

� �
(34)

such that Vð~aÞ?0Wð~aÞVð~aÞ? < 0; with Vð~aÞ?0
¼ ½I Aclð~aÞ Bwð~aÞ�. Therefore, substituting Eqs. (33) and (34)
into Eq. (32) to obtain

Pð~a; gÞ Pð~aÞ 0

Pð~aÞ 0 0

0 0 I

2
64

3
75þ

Gð~aÞ0 0

Rð~aÞ0 0

0 I

2
64

3
75 Aclð~aÞ0 �I 0

Bwð~aÞ0 0 �I

" #

þ
Aclð~aÞ Bwð~aÞ
�I 0

0 �I

2
64

3
75 Gð~aÞ Rð~aÞ 0

0 0 I

" #
< 0 (35)

At this point, it is important to impose particular structure to the
SV X(a) to provide convex parametrization. Therefore, choosing
Rð~aÞ ¼ eGð~aÞ is sufficient to keep convexity of Eq. (35), where e
is a scalar used to provide extra degree-of-freedom to perform line
search to reduce conservatism. Using the change of variable
Zð~aÞ ¼ Kð~aÞGð~aÞ yields

Pð~a; gÞ Pð~aÞ 0

Pð~aÞ 0 0

0 0 I

2
64

3
75þ

Gð~aÞ0Aclð~aÞ0 �Gð~aÞ0 0

eGð~aÞ0Aclð~aÞ0 �eGð~aÞ0 0

Bwð~aÞ0 0 �I

2
64

3
75

þ
Aclð~aÞGð~aÞ eAclð~aÞGð~aÞ Bwð~aÞ
�Gð~aÞ �eGð~aÞ 0

0 0 �I

2
64

3
75 < 0

that directly leads to Eq. (25). Multiplying Eq. (28) from
left by ½Cclð~aÞ � I� and by its transpose from right with
Cclð~aÞ ¼ Cð~aÞ þ Duð~aÞKð~aÞ to obtain Wð~aÞ > Cclð~aÞPð~aÞ
Cclð~aÞ0, with Schur complement, Eq. (22) can be recovered. The
LMI (29) ensures that � is the guaranteed bound of the H2 norm
of the closed-loop system.

THEOREM 6. For a given scalar c1, if there exist a continuously
differentiable matrix 0 < Pð~aÞ ¼ Pð~aÞ0 2 Rn�n, matrices

Zð~aÞ 2 Rm�n; Gð~aÞ 2 Rn�n, and a scalar e> 0, such that the fol-
lowing PLMI satisfied:

U1ð~a; _~aÞ � � �
U2ð~aÞ �eðGð~aÞ þ Gð~aÞ0Þ � �
U3ð~aÞ U4ð~aÞ �Ip �
Bwð~aÞ0 0r�n Dwð~aÞ0 �c2

1Ir

2
6664

3
7775 < 0 (36)

with U1ð~a; _~aÞ and U2ð~aÞ defined in Eqs. (26) and (27), and

U3ð~aÞ ¼ Cð~aÞGð~aÞ þ Duð~aÞZð~aÞ;
U4ð~aÞ ¼ eCð~aÞGð~aÞ þ eDuð~aÞZð~aÞ

then the gain-scheduling controller

Kð~aÞ ¼ Zð~aÞGð~aÞ�1

stabilizes the closed-loop system with a guaranteed H1 perform-
ance bound c1 for any pair ð~a; _~aÞ 2 K� X.

Proof. Defining the projection matrix

Tð~aÞ ¼
I Aclð~aÞ 0 0

0 Cclð~aÞ I 0

0 0 0 I

2
4

3
5

with

Aclð~aÞ ¼ Að~aÞ þ Buð~aÞKð~aÞ;
Cclð~aÞ ¼ Cð~aÞ þ Duð~aÞKð~aÞ

multiplying Eq. (36) by Tð~aÞ from left and by Tð~aÞ0 from the
right. Since _~a 2 X defined in Eq. (18), the PLMI (24) can be
obtained which represents the bounded real lemma for time-
varying systems; therefore, c1 is an upper bound for the H1
norm of the closed-loop system.

Remark 2. Theorems 5 and 6 encompass robust (parameter-in-
dependent) controller synthesis as a special case. To illustrate,
constraining the synthesis variables to be constant matrices, i.e.,
Gð~aÞ ¼ G and Zð~aÞ ¼ Z, a robust controller K¼ ZG–1 can be syn-
thesized as direct result of these two theorems.

4.1 PLMIs Relaxation. As shown above, the synthesis con-
ditions of Theorems 5 and 6 are formulated as PLMIs (for a fixed
scalar e) in terms of time-varying parameters inside the multisim-
plex domain, which is a special type of convex optimization prob-
lem. PLMIs are equivalent to infinite dimensional LMI constraints
and it seems that it is difficult to be solved numerically at this
stage. However, modern robust optimization techniques consider-
ably strengthened this framework by providing a rigorous ways to
deal with the PLMIs [17]. Several powerful numerical and com-
putational tools have been developed recently by many research-
ers independently that are aimed to approximate the PLMIs
[10,17]; to mention a few: sum-of-square matrices [18], SV
approach [19], and coefficient check approach using P�olya’s theo-
rem [10]. Exploiting these relaxation methods overcomes the dif-
ficulty for solving the PLMIs by converting them into finite-
dimensional LMIs as demonstrated in Ref. [20].

Finally, the relaxation approach developed in Ref. [9] is
adopted in this paper to relax the PLMIs conditions of Theorems
5 and 6, since it supports PLMIs that depends on multisimplex pa-
rameters. It is worth noting that the algebraic manipulation of
PLMIs is a sophisticated procedure. However, a specialized
parser, ROLMIP4 [21], has been recently developed as a tool to
perform such manipulation and relaxation of the PLMIs. This
package works jointly with the LMI parser YALMIP [22] and the
solver SeDuMi [23] that have been used in this paper to obtain the
optimal solution of the convex optimization (synthesis) problem.

4Available for download at http://www.dt.fee.unicamp.br/	agulhari/rolmip/
rolmip.htm
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5 Numerical Examples

The objective of the numerical examples and simulation results
presented in this section is to demonstrate the advantage of the
PLMIs conditions proposed in this paper. Comparison results only
with the approach described in Ref. [4] will be included since it
represents the state-of-the-art for gain-scheduling control with
uncertain scheduling parameters.

Example 1. Consider the following LPV system that represents
the dynamics of two-masses and two-springs [4]:

AðhðtÞÞ ¼

0 0 1 0

0 0 0 1

�2 1 �h1ðtÞ 0

2 �2 0 �2h1ðtÞ

2
66664

3
77775;

Bw ¼

0

0

1

0

2
66664

3
77775; Bu ¼ ½0 0 0 1�0;

C ¼ ½0 1 0 0�; Dw ¼ 0; DuðhðtÞÞ ¼ h2ðtÞ

with the following bounds:

0:5 � h1ðtÞ � 3:5; 0:5 � h2ðtÞ � 1:5; j _hqðtÞj � j;

j dqðtÞj � f; j _dqðtÞj � 10� f; q ¼ 1; 2

Theorem 5 is used to synthesize gain-scheduling controllers for
different bounds of measurement noise. Table 1 presents the
achieved H2 bound �. Clearly, the H2 bounds are influenced by
the uncertainty dq(t) associated with the scheduling parameters
hq(t) for q¼ 1, 2. Table 2 from Ref. [4] is given here to facilitate
comparison with our controllers. Although the achievable per-
formance for the two methods is very close, it can be observed
that the controllers synthesized via Theorem 5 outperform the
method of Ref. [4] for large values of f and j.

In addition to the gain-scheduling controller, robust controller
(parameter-independent) has been synthesized (see Remark 2)
with its performance shown in the last row of Table 1. Note that
as the uncertainty size increases, the achieved H2 performance
(for the gain-scheduling controller) deteriorates. For example,
when f¼ 2, the achieved performance is the same as the perform-
ance provided by the robust controller. This is a logical observa-
tion since as the uncertainty of the scheduling parameter

increases, the measurement is not reliable to be used for schedul-
ing anymore. In this case, there is no benefit for the designer to
implement gain-scheduling controller over the robust one since
the achievable performance is the same.

Example 2. Consider the following LPV system [4]:

AðhðtÞÞ ¼
25:9� 60hðtÞ 1

20� 40hðtÞ 34� 64hðtÞ

" #
; Bu ¼

3

2

" #
;

Bw ¼
�0:03

�0:47

" #
; C¼

1 1

0 0

" #
; Dw ¼

0

0

" #
; Du ¼

0

1

" #

The varying parameter h(t) has the following bounds
0 � hðtÞ � 1; j _hðtÞj � j, with measurement uncertainty bound
jdðtÞj � f and j _dðtÞj � 10� f.

Theorem 6 is used to synthesize H1 gain-scheduling controller
for this example. The guaranteed H1 performance is shown in
Table 3, as expected, the performance deteriorates as d and j
increase. Robust controller has been synthesized as well to study
its performance compared to the gain-scheduling controller. The
performance of the robust controller is shown in the last row of
Table 3. While the gain-scheduling controller shows better per-
formance for low range of uncertainty size, it provides no

Table 1 H2 Guaranteed cost using Theorem 5

f j

0.001 0.01 0.1 1
0.1 0.092 0.093 0.097 0.129
0.5 0.276 0.276 0.278 0.285
1 0.278 0.279 0.280 0.287
2 0.282 0.283 0.286 0.295
Robust 0.282 0.283 0.286 0.295

Table 2 H2 Guaranteed cost method of Ref. [4]

f j

0.001 0.01 0.1 1
0.1 0.070 0.077 0.139 0.147
0.5 0.258 0.263 0.299 0.300
1 0.284 0.289 0.300 0.300
2 0.300 0.300 0.300 0.300
Robust 0.300 0.300 0.300 0.300

Table 3 H‘ Guaranteed cost using Theorem 6

f j

0.001 0.01 0.1 1
0.01 0.583 0.584 0.589 0.652
0.1 0.718 0.718 0.727 0.793
0.2 0.791 0.791 0.792 0.795
0.5 0.795 0.795 0.795 0.795
Robust 0.795 0.795 0.795 0.795

Table 4 H‘ Guaranteed cost method of Ref. [4]

f j

0.001 0.01 0.1 1
0.01 0.480 0.489 0.594 0.795
0.1 0.612 0.622 0.732 0.795
0.2 0.752 0.763 0.795 0.795
0.5 0.795 0.795 0.795 0.795
Robust 0.795 0.795 0.795 0.795

Fig. 1 Performance versus � with f 5 0.2

Journal of Dynamic Systems, Measurement, and Control JANUARY 2016, Vol. 138 / 014502-5

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 11/03/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



significant improvement over the robust controller when f� 0.5.
Table 4 shows the results of Ref. [4] for the same example. Com-
paring these two tables, it can be observed that our approach
achieves very competitive results with those associated with
Ref. [4]. A line search for e with a linear-grid of 350 points
between 10�4 and 10�1 has been conducted and is shown in Fig. 1
for f¼ 0.2 with different rates of change (j). Figure 2 shows the
guaranteed H1 performance as function of f and j.

Simulation study has been conducted for this example to illus-
trate robustness of the synthesized controller against the mismatch
between the actual and measured scheduling parameters. A sched-
uling parameter that is defined as hðtÞ ¼ 05þ 05 sinð02tÞ and a

noisy version of this signal ð~hðtÞÞ are both shown in Fig. 3(a). A
random noise with bounds jdðtÞj � 0:075 and j _dðtÞj � 1 has been
intentionally added to the actual scheduling parameter to imitate
the measurement noise. Then, Theorem 6 is used to synthesize
controller (with e¼ 0.001) at the vertices of the multisimplex do-
main as

K1 ¼ ½2:060 � 84:399�; K2 ¼ ½�0:725 � 50:508�;
K3 ¼ ½1:096 � 75:031�; K4 ¼ ½�0:837 � 48:307�

To simulate the closed-loop system, an L2 disturbance signal
defined by wðtÞ ¼ expð�04tÞ is generated as disturbance input.
The responses to this disturbance for both cases are shown in
Fig. 3(b). Clearly, the noise amplitude in the response (associated
with the noisy scheduling parameter) is much less than the noise
amplitude in the measured scheduling parameter. This simulation
result not only shows good robustness against measurement noise
but also good disturbance attenuation as well.

6 Conclusions

This brief deals with state-feedback gain-scheduling controller
synthesis for polytopic LPV systems with noisy scheduling
parameters. PLMIs conditions have been derived to synthesize
controller with a prescribed performance measure in terms of H2

and H1 norms. Our synthesis conditions encompass robust con-
troller synthesis as a special case. Numerical examples and simu-
lations are given to study the effect of uncertainty on the
guaranteed performance. Compared with other approaches from
literature, the proposed controllers are less conservative when
noise level is high. The effectiveness of the synthesize approach is
very tempting to be extended to handle dynamic output-feedback
controllers in future work. In addition, experimental validation is
another direction for future study to demonstrate practicality of
the developed synthesis conditions.
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Nomenclature

In ¼ identity matrix of size n� n
n ¼ is omitted when the size of the identity can be easily

inferred from the context
0n�p ¼ zero matrices of size n� p

? ¼ the transpose of the off-diagonal matrix block

References
[1] Daafouz, J., Bernussou, J., and Geromel, J., 2008, “On Inexact LPV Control

Design of Continuous Time Polytopic Systems,” IEEE Trans. Autom. Control,
53(7), pp. 1674–1678.

[2] Sato, M., 2010, “Gain-Scheduled State-Feedback Controllers Using Inexactly
Measured Scheduling Parameters: Stabilizing and H1 Control Problems,”
SICE J. Control, Meas. Syst. Integr., 3(4), pp. 285–291.

[3] Wu, F., Yang, X. H., Packard, A., and Becker, G., 1996, “Induced L2-Norm
Control for LPV Systems With Bounded Parameter Variation Rates,” Int. J. Ro-
bust Nonlinear Control, 6(9–10), pp. 983–998.

[4] Sato, M., Ebihara, Y., and Peaucelle, D., 2010, “Gain-Scheduled State-
Feedback Controllers Using Inexactly Measured Scheduling Parameters: H2

and H1 Problems,” American Control Conference, pp. 3094–3099.
[5] Sato, M., 2013, “Robust Gain-Scheduled Flight Controller Using Inexact

Scheduling Parameters,” American Control Conference (ACC), pp. 6829–6834.
[6] Lacerda, M. J., Tognetti, E. S., Oliveira, R. C., and Peres, P. L., 2014, “A New

Approach to Handle Additive and Multiplicative Uncertainties in the Measure-
ment for H1 LPV Filtering,” Int. J. Syst. Sci. (published online).

Fig. 2 Guaranteed performance

Fig. 3 Simulation: (a) measured and exact scheduling parame-
ters and (b) disturbance attenuation responses associated with
exact and noisy scheduling parameter

014502-6 / Vol. 138, JANUARY 2016 Transactions of the ASME

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 11/03/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1109/TAC.2008.928119
http://dx.doi.org/10.9746/jcmsi.3.285
http://dx.doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C
http://dx.doi.org/10.1080/00207721.2014.911389


[7] Agulhari, C., Tognetti, E., Oliveira, R., and Peres, P., 2013, “ H1 Dynamic
Output Feedback for LPV Systems Subject to Inexactly Measured Scheduling
Parameters,” Proceedings of American Control Conference, pp. 6060–6065.

[8] Al-Jiboory, A. K., and Zhu, G. G., 2015, “Robust Gain-Scheduling H2 Control
With Imperfectly Measured Scheduling Parameters,” (submitted).

[9] Oliveira, R. C. L. F., Bliman, P., and Peres, P. L. D., 2008, “Robust LMIs With
Parameters in Multi-Simplex: Existence of Solutions and Applications,” 47th
IEEE Conference on CDC, pp. 2226–2231.

[10] Oliveira, R., and Peres, P., 2007, “Parameter-Dependent LMIs in Robust Analy-
sis: Characterization of Homogeneous Polynomially Parameter-Dependent Sol-
utions Via LMI Relaxations,” IEEE Trans. Autom. Control, 52(7), pp.
1334–1340.

[11] Oliveira, R., de Oliveira, M., and Peres, P., 2011, “Robust State Feedback LMI
Methods for Continuous-Time Linear Systems: Discussions, Extensions and
Numerical Comparisons,” IEEE International Symposium on CACSD, pp.
1038–1043.

[12] Oliveira, R. C. L. F., Bliman, P.-A., and Peres, P. L., 2009, “Selective Gain-
Scheduling for Continuous-Time Linear Systems With Parameters in Multi-
Simplex,” European Control Conference.

[13] Geromel, J. C., and Colaneri, P., 2006, “Robust Stability of Time-Varying Poly-
topic Systems,” Syst. Control Lett., 55(1), pp. 81–85.

[14] de Souza, C. E., and Trofino, A., 2006, “Gain-Scheduled H2 Controller Syn-
thesis for Linear Parameter Varying Systems Via Parameter-Dependent Lyapu-
nov Functions,” Int. J. Robust Nonlinear Control, 16(5), pp. 243–257.

[15] Sato, M., 2008, “Design Method of Gain-Scheduled Controllers Not Depending
on Derivatives of Parameters,” Int. J. Control, 81(6), pp. 1013–1025.

[16] Pipeleers, G., Demeulenaere, B., Swevers, J., and Vandenberghe, L., 2009,
“Extended LMI Characterizations for Stability and Performance of Linear Sys-
tems,” Syst. Control Lett., 58(7), pp. 510–518.

[17] Scherer, C. W., 2006, “LMI Relaxations in Robust Control,” Eur. J. Control,
12(1), pp. 3–29.

[18] Scherer, C. W., and Hol, C. W. J., 2006, “Matrix Sum-of-Squares Relaxations
for Robust Semi-Definite Programs,” Math. Program., 107, pp. 189–211.

[19] Peaucelle, D., and Sato, M., 2009, “LMI Tests for Positive Definite Polyno-
mials: Slack Variable Approach,” IEEE Trans. Autom. Control, 54(4), pp.
886–891.

[20] Montagner, V. F., Oliveira, R. C., Peres, P. L., and Bliman, P.-A., 2009,
“Stability Analysis and Gain-Scheduled State Feedback Control for
Continuous-Time Systems With Bounded Parameter Variations,” Int. J. Con-
trol, 82(6), pp. 1045–1059.

[21] Agulhari, C. M., de Oliveira, R. C. L. F., and Peres, P. L. D., 2012, “Robust
LMI Parser: A Computational Package to Construct LMI Conditions for Uncer-
tain Systems,” XIX Brazilian Conference on Automation (CBA 2012), pp.
2298–2305.

[22] L€ofberg, J., 2004, “YALMIP: A Toolbox for Modeling and Optimization in
MATLAB,” CACSD Conference.

[23] Sturm, J., 1999, “Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over
Symmetric Cones,” Optim. Methods Software, 11(1), pp. 625–653.

Journal of Dynamic Systems, Measurement, and Control JANUARY 2016, Vol. 138 / 014502-7

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 11/03/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1109/TAC.2007.900848
http://dx.doi.org/10.1016/j.sysconle.2004.11.016
http://dx.doi.org/10.1002/rnc.1040
http://dx.doi.org/10.1080/00207170701691521
http://dx.doi.org/10.1016/j.sysconle.2009.03.001
http://dx.doi.org/10.3166/ejc.12.3-29
http://dx.doi.org/10.1007/s10107-005-0684-2
http://dx.doi.org/10.1109/TAC.2008.2010971
http://dx.doi.org/10.1080/00207170802403750
http://dx.doi.org/10.1080/00207170802403750
http://dx.doi.org/10.1080/10556789908805766

	s1
	s2
	FD1
	FD2
	aff1
	l
	FN2
	FD3
	FD4
	FD5
	FD6
	FD7
	FD8
	s2
	s3
	FD9
	FD10
	s3A
	FD11
	FD12
	FD13
	FN3
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	s3B
	FD20
	FD21
	FD22
	FD23
	FD24
	s4
	FD25
	FD26
	FD27
	FD28
	FD29
	FD30
	FD31
	FD32
	FD33
	FD34
	FD35
	FD36
	s4
	s4A
	FN4
	s5
	1
	2
	3
	4
	1
	s5
	s6
	1
	2
	3
	4
	5
	6
	2
	3
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

