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This article considers the parameter estimation of multi-fiber family models for biaxial mechanical
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propagation due to the errors in variables has been carefully characterized using the constitutive model.

Then, the parameter estimation of the artery model has been formulated into nonlinear least squares

optimization with an appropriately chosen weight from the uncertainty model. The proposed technique

is evaluated using multiple sets of synthesized data with fictitious measurement noises. The results of

the estimation are compared with those of the conventional nonlinear least squares optimization

without a proper weight factor. The proposed method significantly improves the quality of parameter

estimation as the amplitude of the errors in variables becomes larger. We also investigate model

selection criteria to decide the optimal number of fiber families in the multi-fiber family model with

respect to the experimental data balancing between variance and bias errors.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical properties of the arterial wall vary with anatomical
variations and for different species. It has also been suggested that
the structure and material properties of the arterial wall alter
under various physiological or pathological conditions (Langille,
1993; Humphrey, 2008). In such studies, precise parameter
estimation is essential to quantify the difference in mechanical
behavior. In vascular mechanics, mechanical behavior of the
arterial wall is typically described by a nonlinear equation,

y ¼ fðx;HÞ, (1)

where x and y are vectors of independent and dependent variables
and H is a set of unknown parameters. Experimental studies in
vascular mechanics normally utilize a nonlinear least squares
(NLS) technique in which the sum of the squares of the difference
between the experimental measurements and the calculated
responses of dependent variables y (e.g., pressure and axial force)
is minimized, while independent variables x (e.g., outer diameter
and axial stretch) are considered free of error (Pandit et al., 2005;
Schulze-Bauer and Holzapfel, 2003; Wang et al., 2006). All
variables, however, are measured with errors and it is known
that an NLS method results in biased parameter estimation when
uncertainty exists in all variables in a constitutive model (Emery
et al., 2000; Fadale et al., 1995). In such a case, parameter
estimation should be correctly formulated as the NLS optimiza-
ll rights reserved.
tion with an appropriately chosen objective function (Fadale et al.,
1995; Schwetlick and Tiller, 1985).

It appears that the arterial wall owes its main mechanical
characteristics, such as the progressive stiffening and anisotropy,
to collagen fibers and their orientations (Holzapfel et al., 2000).
Many constitutive models have been proposed to account for the
distribution of collagen fibers (e.g., Lanir et al., 1996; Gasser et al.,
2006). These models use exponential functions for collagen fibers
in their constitutive models and in general fitted well the
progressive stiffening with the increasing stretch. When there
exist measurement noises in experimental data, however, one
often experiences difficulty in obtaining a good fit in the high
stretch region, which also causes inaccurate estimation of
vascular stiffness. In this paper, we present the weighted
nonlinear least squares (WNLS) optimization to estimate the
parameters of a multi-fiber model of arteries (Baek et al., 2007a;
Hu et al., 2007; Masson et al., 2008) considering the uncertainty
due to the measurement errors in all variables. We first derive an
uncertainty model from the constitutive equation by assuming
that experimental measurements are corrupted by the indepen-
dent and identically distributed white noise. We then formulate
the WNLS optimization using the inverse of the covariance matrix
of the uncertainty as a correct weight factor. We evaluate the
proposed technique with multiple sets of fictitious data contain-
ing the measurement errors in all variables at different noise
levels by comparing the estimation results with those from the
NLS optimization without a proper weight factor.

In parameter estimation, the larger number of parameters for a
model provides more flexibility and generally gives better fitting,
i.e., decreases the residual error. However, too many parameters
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increase the bias error as well as the complexity of the model.
When the degrees of freedom in parameter estimation exceed
the information in the data, the resulting estimated model cannot
be generalized beyond the fitting data. In statistics, this
phenomenon is usually referred to as overfitting (Naik et al.,
2007). Therefore, there is a tradeoff between descriptive accuracy
and parsimony, which can be addressed by a model selection
criterion (Wagenmakers and Farrell, 2004). We utilize multiple
model selection criteria to investigate an optimal number of
parameters (or fiber families) for two different arteries.
2. Methods

2.1. Constitutive relations for the mechanical behavior of the passive

artery

Cyclic inflation of an arterial segment at multiple fixed lengths
is a typical biaxial test in vascular mechanics. It measures axial
force and internal pressure versus changes in diameter and axial
stretch. Experimental data from the test are used to determine
appropriate constitutive relations based on the assumption of an
ideal cylindrical geometry of the artery (Humphrey, 2002). In the
current study, we use a microstructurally motivated, multi-fiber
family model, i.e., we assume a constitutive strain energy with an
isotropic neo-hookean strain energy function and strain energy
functions due to multiple fiber families (cf. Holzapfel et al., 2000;
Baek et al., 2007a):

Ŵ ¼
c

2
ðI1 � 3Þ þ

X
k

cðkÞ1

4cðkÞ2

fexpðcðkÞ2 ðl
ðkÞ2
� 1Þ2Þ � 1g, (2)

where c, cðkÞ1 and cðkÞ2 are material parameters, such that c, cðkÞ1 and
cðkÞ2 X0 (Holzapfel, 2006; Holzapfel et al., 2004). I1 ¼ tr C, where C
is the right Cauchy–Green deformation tensor. lðkÞ is the stretch of
the kth fiber family, given by

lðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðly sinaðkÞÞ2 þ ðlz cosaðkÞÞ2

q
, (3)

where aðkÞ is the orientation of the fiber family, and lz and ly are
the axial and circumferential stretches. The intramural stress can
be obtained as

T ¼ �pIþ T̂; T̂ ¼
2

J
F
qW

qC
FT, (4)

where p is a Lagrange multiplier, F is the deformation gradient,
and J is its determinant. For a thin membrane, the transmural
pressure Pi and the axial force Fz can be approximated by

Pi ¼
hðT̂yy � T̂rrÞ

rm
, (5)

Fz ¼ 2prmhðT̂zz � T̂rrÞ � pðr2
m � r2

c ÞPi, (6)

where rm ¼ ðri þ roÞ=2, h ¼ ro � ri, and rc is the radius of cannula.
T̂rr , T̂yy and T̂zz are the normal components of stress in the radial,
circumferential, and axial directions, respectively. Thus, by sub-
stituting (2)–(4) into (5) and (6), the theoretical relation between a
force vector y ¼ ½Fz; Pi�

T and a displacement vector x ¼ ½lz; do�
T can

be written as in Eq. (1).

2.2. WNLS optimization for a biaxial test of the artery

In experiments, all variables are measured with errors and we
denote the measured variables as x̂n ¼ ½lzðtnÞ; doðtnÞ�

T and ŷn ¼

½FzðtnÞ;PiðtnÞ�
T at time tn for n ¼ 1; . . . ;m. The true values of the

variables are denoted by x̃n and ỹn, which are corrupted by the
measurement errors, en and en during the experiment, i.e.,
the measured variables can be written as

x̂n ¼ x̃n þ en, (7)

ŷn ¼ ỹn þ en, (8)

where en�WNð0;ReÞ and en�WNð0;ReÞ are assumed to be
independent and identically distributed white noises with zero
means and corresponding covariance matrices.

In order to consider the measurement errors in all variables,
the total least squares estimation problem can be formulated
by the following objective function (Beck and Arnold, 1977;
Schwetlick and Tiller, 1985):

Xm
n¼1

ŷn � fðxn;HÞ
x̂n � xn

 !T

R�1
n

ŷn � fðxn;HÞ
x̂n � xn

 !
, (9)

where Rn is a collective covariance matrix of the measurement
errors. Then, we have to solve for 2mþ NðHÞ unknowns to
minimize Eq. (9), where m is the number of data points and NðHÞ
is the number of parameters in H. For a nonlinear function of
Eq. (1), an iterative scheme (e.g., Gauss–Newton method) has to
be employed. Solving the nonlinear regression problem with such
a large number of unknown variables is very difficult. Schwetlick
and Tiller (1985) stated that for the NLS optimization, solving the
total least squares estimation problem using a standard software
‘‘cannot be recommended unless the problem is small.’’ In this
study, we use the classical parameter estimation method with
only NðHÞ unknowns in the objective function:

Xm
n¼1

ðŷn � fðx̂n;HÞÞTWnðŷn � fðx̂n;HÞÞ, (10)

where Wn are appropriately chosen weight matrices. The problem
is, then, to solve for H by minimizing Eq. (10) with correct weights
obtained by the uncertainty model which will be referred to as the
WNLS optimization. Let the uncertainty model vn represent the
uncertainty in ŷn � fðx̂n;HÞ. The uncertainty in fðx̂n;HÞ is
propagated from the measurement noise of en, and it can be
approximated by using the Taylor series of f with respect to en and
ignoring the higher order terms of en in the series. Then, we can
obtain the uncertainty model vn for ŷn � fðx̂n;HÞ as

vn ¼ �
qf

qx
ðx̃n;HÞen þ en. (11)

Note that the uncertainty model for the force measurement now
includes the effect of measurement noise in the displacement.
Eq. (11) shows that the uncertainty increases with an increase in
qf=qx, which is a stiffness term in vascular mechanics. To
incorporate the uncertainty model into Eq. (10), the inverse of
the covariance matrix of the uncertainty has to be used as the
weight factor (Beck and Arnold, 1977; Emery et al., 2000). The
covariance matrix for vn is derived as

Rvn ¼ EðvnvT
nÞ ¼

qf

qx

� �
Re

qf

qx

� �T

þ Re, (12)

where EðAÞ is the expectation of A. Finally, using the uncertainty
model Eq. (11), the objective function equation (10) can be written
as

S ¼
Xm

n¼1

ðŷn � fðx̂n;HÞÞTR
�1
vn
ðŷn � fðx̂n;HÞÞ. (13)

The correct modeling of the measurement error and the formula-
tion of the WNLS optimization will provide the minimum
estimation error variance. For the computation, however, the
initial estimates H� are obtained by the NLS optimization without
the uncertainty model. Then, the covariance matrix Rvn in Eq. (13)
is approximated using the estimates H� and x̂n . With Rvn , the new
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Fig. 1. Pressure versus radius plots for the 4-fiber-family model for a set of true

data (solid lines) and fictitious noisy data (dotted lines) at noise levels of 0.005

(a) and 0.01 (b) and different axial stretches lz ¼ 1:2;1:3;1:4.
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estimates of H1 are obtained by minimizing Eq. (13). The
covariance matrix Rvn is then updated iteratively using the
previous estimates for the next optimization. The estimates in
each iteration are obtained by using constrained optimization in
Matlab (The Mathworks Inc.) with multiple choices of initial
points, and one to three iterations are used to obtain the final
estimates in this paper.

Vascular stiffness changes according to alterations in physio-
logical and pathophysiological conditions, such as aging (O’Rourke
and Hashimoto, 2007), hypertension (Hu et al., 2007), during
pregnancy (Hu et al., 1998), and diabetes mellitus (Oxlund et al.,
1989). Accurate assessment of the arterial wall stiffness in
physiological range can play an important role in understanding
the pathophysiology and progression of vascular diseases. We
calculate the linearized circumferential stiffness from both the
WNLS and NLS methods and compare its accuracy (see Baek et al.,
2007a, for linearization). The results will demonstrate that our
proposed scheme provides a more accurate assessment of the
arterial stiffness.

2.3. Model selection criteria for optimal number of parameters

In order to find the optimal number of parameters (or number
of fiber families) for the multi-fiber family model Eq. (2), we
utilize three different criteria for model selection: Akaike
information criterion (AIC; Glatting et al., 2007), a modified form
of AIC (AICc; Glatting et al., 2007), and the root mean square error
measure (RMS; Holzapfel et al., 2005), given by

AIC ¼ m ln
S

m

� �
þ 2ðN þ 1Þ, (14)

AICc ¼ AICþ
2ðN þ 1ÞðN þ 2Þ

m� N � 2
, (15)

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

m� N

r
, (16)

where S, N, and m are, respectively, the residual, the number of
parameters, and the sample size. AIC was first introduced by
Akaike (1974, 1981) based on the concept of entropy to describe
the tradeoff between bias and variance in model construction. AIC
has been used as a model selection criterion that selects an
optimal model considering both precision of fitting and complex-
ity of the model (Anderson et al., 1994). While the first term in the
right-hand side of Eq. (14) decreases with a decrease in the
residual, the second term penalizes it for increasing the size
(number of parameters) of the model and prevents overfitting.
RMS in Eq. (16) has been used as a heuristic criterion in selecting
among models although no statistical justification exists (Myung,
2000). The number of parameters that minimizes a given criterion
is considered as being optimal for the model.

In the multi-fiber family model, the number of parameters
increases with an increase in the number of fiber families. The
fibers are assumed to be symmetric with respect to the axial axis
on the vessel wall. In order to evaluate the model selection
criteria, the residual equation (13) is obtained by increasing the
number of fiber families from 2 to 10 for each data set. Briefly, the
2-fiber-family model has four independent parameters (c, c1

1 ¼ c2
1,

c1
2 ¼ c2

2 and a1 ¼ �a2). For the 3-fiber-family model, one more
fiber family is added in either circumferential direction or axial
direction to minimize the residual, which results in six (indepen-
dent) unknown parameters. The 4-fiber-family model has two
symmetric fibers in helical directions, one in the axial direction,
and one in the circumferential direction resulting in eight
independent parameters. From six fiber families, two additional
symmetric fibers are added at each step, yielding three additional
parameters (an angle and two parameters for exponential
function). Hence, 11, 14, and 17 independent parameters are
assumed for 6-, 8-, and 10-fiber-family models, respectively.

The model selection criteria are specific to the experimental
data. Hence, experimental data from two rabbit basilar arteries
and three mouse carotid arteries are tested in order to investigate
optimal number of fiber families.

3. Results

3.1. Comparison between the proposed WNLS optimization and the

conventional NLS optimization

In order to demonstrate the effectiveness of the proposed WNLS
method, we generated noise-corrupted, fictitious experimental
data and performed the parameter estimation using the WNLS
method as well as the standard approach (NLS) without an
uncertainty model. We assumed a set of ‘‘true’’ parameters and
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generated synthesized true data for the inflation test at fixed axial
stretches (lz ¼ 1:2;1:3;1:4), i.e., the pressure and axial force data
were obtained from Eq. (1) for a given radius and axial stretch using
the true parameters. White Gaussian noises with given noise levels
were numerically generated and added to the synthesized data of
fdo; lz; Fz; Pig to produce fictitious experimental data. The noise
level is defined as the ratio of the standard deviation of the noise to
the maximum value of the data. Fig. 1 shows the pressure vs. radius
plots for lz ¼ 1:2;1:3;1:4 for the true data, as well as the fictitious
data at noise levels of 0.005 and 0.01. Then, the NLS and proposed
WNLS methods were used to estimate parameters for each
fictitious data set. Fig. 2 shows pressure-radius and axial force-
radius plots using the true material parameters and the data
calculated with estimated parameters of the 4-fiber-family model
for both the NLS and WNLS methods. Evidently, the graphs show
better fitting curves for pressure and axial force when the
uncertainty model is incorporated (Figs. 2(b) and (d)). Fig. 3 shows
another set of fictitious data with higher slopes in the high stretch
region and the corresponding fitting curves using both the NLS and
WNLS methods. The WNLS significantly improved the slope of the
fit especially in the high stretch region (Figs. 2 and 3). The
advantage of the WNLS method over the standard NLS method is
more obvious for the data with higher slopes (Fig. 3). Table 1
summarizes all true and estimated values of parameters corre-
sponding to Figs. 2 and 3. For a quantitative measure of estimation
errors, the following normalized error was defined as (Baek et al.,
2007a)

e ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðPest � PtrueÞ

2P
ðPtrueÞ

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðFest � FtrueÞ

2P
ðFtrueÞ

2

s !
, (17)
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Fig. 2. Comparison between the NLS (a and c) and WNLS (b and d) optimizations for the

parameters (dotted lines) and estimated parameters (solid lines) for the data with mod
where Pest and Ptrue are the estimated and true values of pressure.
Fest and Ftrue are the estimated and true values of axial force.
Normalized errors, e, were obtained and averaged for a set of five
different random noise sequences at each noise level. Table 2
shows the averaged, normalized errors obtained from both the
NLS and WNLS methods at noise levels of 0.005, 0.008, 0.01, 0.02,
and 0.03. The WNLS method resulted in normalized errors smaller
than those from the NLS method at all noise levels.

True and estimated values of the circumferential stiffness at
Pi ¼ 75 mm Hg and lz ¼ 1:3 corresponding to Figs. 2 and 3 are
shown in Table 3. The WNLS method resulted in much better
estimation than the NLS method for both cases. For example,
corresponding to the data of Fig. 2, the error of estimated stiffness
using the NLS method was about 15 percent whereas it was less
than 3 percent when using the WNLS method.
3.2. Optimal number of fiber families

Experimental data from two rabbit basilar arteries (Baek et al.,
2007a) and three mouse carotid arteries (Dye et al., 2007) were
used to investigate the optimal number of fiber families for the
proposed model. Figs. 4(a) and (b) depict experimental data for
these arteries as well as the best-fit curves using the WNLS
optimization with the 4-fiber-family model. For all sets of data
tested, residuals for the WNLS optimization reduced significantly
up to 3-fiber-family model (six parameters), and then slightly
decreased for further increase in the number of fiber families (see
e.g., Figs. 4(c) and (d)). Interestingly, three different criteria led to
an identical optimal number of parameters for each mouse and
rabbit data, which were found to be 11 parameters (six fiber
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Table 1
True and estimated parameters for the fictitious data with moderate and high slopes (corresponding to Figs. 2 and 3) and the experimental data from mouse carotid and

rabbit basilar arteries (corresponding to Figs. 4(a) and (b)).

c (kPa) c1
1 ðkPaÞ c2

1 ðkPaÞ c3
1 ðkPaÞ c1

2 c2
2 c3

2 a1 (�)

Fig. 2 True 0 0.36 7.9 1.2 4.3 1.64 3.07 40.3

NLS 0 0.71 14.2 1.1 3.72 1.12 3.1 42

WNLS 0 0.39 8.7 1.1 4.23 1.56 3.15 41.4

Fig. 3 True 0 0.28 1.73 0.2 4.73 2.96 4.92 45.6

NLS 0 1.3 9.34 0.22 3.05 1.52 4.63 40.5

WNLS 0 0.28 3.4 0.27 4.73 2.36 4.53 44.5

Fig. 4(a) WNLS 42 7.29 14 0.0003 0.152 0 3.11 55.9

Fig. 4(b) WNLS 0 18 14 6.2 1.37 1.48 5.64 47.9

Table 2
Averaged normalized error e at different noise levels using the NLS and WNLS

methods.

Noise level 0.005 0.008 0.01 0.02 0.03

eNLS 0.0093 0.018 0.03 0.07 0.12

eWNLS 0.009 0.01 0.0123 0.025 0.078

eNLS=eWNLS 1.033 1.8 2.44 2.8 1.54

0.03 0.034 0.038 0.042 0.046
−2

0

2

4

6

8

10

12

14
Estimated
True

0.03 0.034 0.038 0.042 0.046
−2

0

2

4

6

8

10

12

14

0.03 0.034 0.038 0.042 0.046
−8

−6

−4

−2

0

2

4

P
re

ss
ur

e 
(k

P
a)

Fo
rc

e 
(m

N
)

0.03 0.034 0.038 0.042 0.046
−8

−6

−4

−2

0

2

4

Radius (cm)Radius (cm)

Estimated
True

Estimated
True

Estimated
True

Fig. 3. Comparison between the NLS (a and c) and WNLS (b and d) optimizations for the 4-fiber-family model. Pressure and axial force versus radius are plotted using true

parameters (dotted lines) and estimated parameters (solid lines) for the data with stiff slopes in the high stretch region at different axial stretches lz ¼ 1:2;1:3;1:4.

Table 3

True and estimated linearized stiffness at Pi ¼ 75 mm Hg and lz ¼ 1:3 correspond-

ing to Figs. 2 and 3 using the NLS and WNLS methods.

True stiffness (kPa) NLS stiffness (kPa) WNLS stiffness (kPa)

Fig. 2 1114 944 1085

Fig. 3 1580 1105 1381

S. Zeinali-Davarani et al. / Journal of Biomechanics 42 (2009) 524–530528
families). Estimated parameters corresponding to Figs. 4(a) and
(b) are listed in Table 1.
4. Discussion

Parameter estimation using the NLS optimization has been
widely used in characterizing mechanical behavior of soft tissues
from the experiments. In this study, we proposed an improved
parameter estimation technique considering the measurement
errors in variables. If the measurement errors in independent
variables are negligible (i.e., Re�0), then the proposed method
becomes identical to the conventional NLS method. However, in
many studies (i.e., arterial inflation and extension tests) such
measurement errors are not negligible. For example, Saravanan
et al. (2006) reported that when the deformation was approxi-
mated by a linear polynomial using three markers, the error in the
first invariant of the right Cauchy–Green deformation tensor was
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�0:06, which is comparable with noise levels we considered in
this study. Although these problems can be treated as total least

squares problems or errors-in-variables models (Beck and Arnold,
1977; Huffel and Vandewalle, 1991), solving a nonlinear problem
with a large number of unknown variables is still very challenging.
Instead, we developed a WNLS technique based on accurate
modeling of uncertainty given by Eq. (11). We showed that the
WNLS optimization with a proper uncertainty model improves
the quality of parameter estimation significantly compared to the
conventional NLS optimization at all noise levels. Especially, for a
collagenous tissue, qf=qx is larger in the high stretch region,
so it produces a higher level of uncertainty propagation and,
hence, estimation results are biased when the displacement
measurement error is not considered within a proper uncertainty
model (Fig. 3). The advantage of using the WNLS was more
pronounced at higher noise levels. The WNLS method provided a
better fit in the high stretch region and proved to be advantageous
when estimating the linearized stiffness within the physiological
range.

In this work, we used synthesized data with Gaussian noises to
evaluate the WNLS optimization. In experiments, however, the
measurement noise should be carefully characterized. Further-
more, although the proposed WNLS optimization helps eliminate
the biased error due to the measurement errors, we have to note
that parameter estimation can be limited by the model error of
the chosen constitutive relation.

The presented constitutive model is similar to the one
developed by Holzapfel et al. (2000, 2004), but has been used in
thin wall models (Baek et al., 2007a; Hu et al., 2007; Masson et al.,
2008). It has also been utilized in modeling of vascular adaptation
during progression of vascular diseases (Baek et al., 2006, 2007b).
The vessel wall presents more dispersed fiber orientation in the
adventitia and intimal layers and the use of an orientation density
function was proposed (Lanir et al., 1996; Gasser et al., 2006). The
choice of the functional form may involve multiple factors such as
the anatomic location of the artery, available microstructural
information, and the specific application and, hence, it is beyond
the scope of the present work. Instead, we focused more on the
situation where one has a functional form for a constitutive
relation and needs to find optimal number of parameters and best
parameter estimates from experimental data. However, the
presented parameter estimation method is general enough and
can be utilized with various models for vascular mechanics.

We used three criteria to evaluate optimal number of
parameters (fiber families) for the chosen constitutive model of
arteries. The best model between several competing models is one
that provides an adequate account of the data while using a
minimum number of parameters. Based on the available data and
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using three different criteria, we found that the model with 11
parameters (six fiber families) minimized our criteria.

In closing, we emphasize the need for the optimal design of
experiments and optimal sampling protocols in vascular me-
chanics (for example, see Lanir et al., 1996). In optimally designed
experiments, the effect of parameter changes is maximized with
respect to the noise and, hence, the estimation error variance can
be reduced.
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