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a b s t r a c t

An event-based sampled discrete-time linear system representing a port-fuel-injection process based on

wall-wetting dynamics is obtained and formulated as a linear parameter varying (LPV) system. The

system parameters used in the engine fuel system model are engine speed, temperature, and load. These

system parameters can be measured in real-time through physical or virtual sensors. A gain-scheduling

controller for the obtained LPV system is then designed based on the numerically efficient convex

optimization or linear matrix inequality (LMI) technique. Simulation results show the effectiveness of the

proposed scheme.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing concerns about global climate change and ever-
increasing demands on fossil fuel capacity call for reduced emis-
sions and improved fuel economy. Port-fuel-injection (PFI) fuel
systems are widely used in vehicles today; however, direct-injection
(DI) fuel systems have also been introduced to markets globally. To
improve the full load performance of DI engines at high speed, Toyota
introduced an engine with a stoichiometric DI system with a DI
injector and an intake port injector for each cylinder (see Ikoma et al.,
2006). The use of gasoline PFI and ethanol DI dual-fuel system to
substantially increase gasoline engine efficiency is described by
Heywood, Cohn, and Bromberg (2007). This shows that with the
introduction of DI fuel systems for the internal combustion engine, PFI
fuel systems will remain part of the engine fuel system for improved
engine performance, which is the main motivation for revisiting the
air-to-fuel ratio control problem for a PFI fuel system.

There have been several fuel control strategies developed for
internal combustion engines to improve the efficiency and exhaust
emissions. A key development in the evolution was the introduc-
tion of a closed-loop fuel injection control algorithm (Rivard, 1973),
followed by the linear quadratic control method (Cassidy & Athans,
1980), and an optimal control and Kalman filtering design (Powers,
Powell, & Lawson, 1983). Specific applications of A/F ratio control
based on observer measurements in the intake manifold were
ll rights reserved.
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developed by Benninger and Plapp (1991). Another approach was
based on measurements of exhaust gas A/F ratio measured by the
oxygen sensor and on the throttle position (Onder, 1993). Choi,
Hedrick, Kelsey-Hayes, and Livonia (1998) also developed a non-
linear sliding mode control of A/F ratio based upon the oxygen
sensor feedback. Continuing research efforts of A/F ratio control
include Wang, Yu, Gomm, Page, and Douglas (2006), Alfieri,
Amstutz, and Guzzella (2009), and Yildiz, Annaswamy, Yanakiev,
and Kolmanovsky (2010). The conventional A/F ratio control for
automobiles uses both closed-loop feedback and feed-forward
control to have good steady state and transient responses.

For a spark-ignited engine equipped with a port-fuel-injection
system, the wall-wetting dynamics are commonly used to model
the fuel injection process; and the wall-wetting effects are com-
pensated on the basis of simple linear models that are tuned and
calibrated through engine tests. These models are quite effective
for an engine operated at steady state or slow transition conditions
but they are difficult for fast transient and other special operational
conditions, for instance, during engine cold start. One of the
approaches to model the wall-wetting dynamics during engine
cold start is to describe it using a family of linear models to
approximate the system dynamics at different engine cylinder head
temperature, speed and load conditions, that is, to translate the fuel
system model into a linear parameter varying (LPV) system.

The use of LPV modeling to control the A/F ratio of a port-fuel-
injection system has been reported by Genc- (2002). An LPV model
is developed with manifold absolute pressure, exhaust value
closing, and inlet value opening as the time-varying parameters.
However, Genc- (2002) does not address the issue of engine cold
start. Furthermore, all LPV control synthesis methods used by Genc-
(2002) are based in continuous time, relying on Tustin’s (bilinear)
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Nomenclature

English

c stoichiometric air-to-fuel ratio
e measurement for control
eP measurement for proportional control
eI measurement for integral control
F ‘ lower linear fractional transformation
Fu upper linear fractional transformation
G(q) transfer function from mi to mc

HðYÞ feed-forward control compensated generalized plant
ĤðYÞ Taylor series expansion of feed-forward control com-

pensated generalized plant
I(q) integrator
KðYÞ gain-scheduling feedback controller
Kf ðYÞ feed-forward controller
L(q) low-pass filter
l pseudo-output
MAO2

d interconnection matrix for the LFT representing AO2d

MA�1
O2

interconnection matrix for the LFT representing A�1
O2

Ma=b interconnection matrix for the LFT for a=b
M1=b interconnection matrix for the LFT for 1=b
Mg interconnection matrix for the LFT for g
mA mass of the air trapped in the cylinder
mc the mass of fuel trapped in the cylinder
mi the mass of fuel injected
mw the mass of fuel residual on the wall
PðYÞ generalized plant without feed-forward control
p pseudo-input
q forward shift operator
TD transport delay
TO2

time constant of the oxygen sensor
ts sample period
u control input
V i the ith vertex of the parameter variation polytope
v engine speed (rpm)
W1(q) weighting function for w1

W2(q) weighting function for w2

w exogenous input
w1 represents the deviation ðmc=mA�mc=m0

AÞ

w2 desired equivalence ratio
w3 input to the feed-forward controller
~w1 unweighted exogenous input for w1

~w2 unweighted exogenous input for w2

~w3 unweighted exogenous input for w3

x states of the feed-forward compensated generalized plant
xAUG states of augmented plant
xI integrator state
xL low-pass filter state
xww wall-wetting state
xcomb combustion state
xO2

states of the oxygen sensor
y equivalence ratio
ys measured equivalence ratio
z error output

Greek

a ratio of fuel delivered from the wall to the cylinder
a0 nominal value of a
ad time-varying fluctuation of a
b ratio of the fuel entering the cylinder from injection
b0 nominal value of b
bd time-varying fluctuation of b
g normalized inverse engine speed
Z H1 performance bound
Y time-varying parameter structure
l barycentric coordinates

State-space realizations (Each state-space realization used in this

paper are listed below in order of appearance.)

fAO2
,BO2

,CO2
g continuous-time state-space matrices of the

oxygen sensor
fAO2d,BO2d,CO2dg discrete-time state-space matrices of the

oxygen sensor
fÂO2d,B̂O2d,Ĉ O2dg discrete-time state-space matrices of the oxy-

gen sensor after performing the fourth-order Taylor
series approximation

{A, B0, B1, B2, C0, D00, D01, D02, C1, D10, D11, D12} discrete-time LPV
system state-space matrices

fÂ,B̂1,B̂2,Ĉ 1,D̂11,D̂12g discrete-time state-space realization
after performing first-order Taylor series expansion

{AL, BL, CL} low-pass filter state-space realization
f ~A, ~B1, ~B2, ~C 1, ~D11, ~D12, ~C 2g augmented discrete-time state-space

realization
fA,B1,B2,C 1,D11,D12,C 2g discrete-time polytopic state-space

realization
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transformation to convert the discrete-time system to a contin-
uous-time system, thus fixing the engine speed and sampling rate
of the discrete-time system.

The contribution of this paper is as follows. First, an event-
based, discrete-time LPV model for the wall-wetting and oxygen
sensor dynamics with wall-wetting parameters and engine speed
as scheduling variables is developed. Then an event-based, gain-
scheduling controller for the derived LPV model is designed. To
cope with practical situations, the discrete-time LPV control
synthesis method given by Caigny, Camino, Oliveira, Peres, and
Swevers (2008) is used to develop the event-based, gain-schedul-
ing controller.

The control structure used in this study is a proportional-
integral (PI) controller. PI controllers are widely used in industry
since they are well understood by control engineers. The PI gains
are often calibrated in a field test for the best performance as
functions of system operational conditions. However, the system
stability and performance are not guaranteed for all time-varying
parameters. Therefore, LPV techniques are applied to design gain-
scheduling PI controllers for guaranteed stability and performance
for all time-varying parameters, which is expected to be well
received by industrial control engineers.

The paper is organized as follows. The models and the modeling
techniques used in this paper are given in Section 2. The design of
the gain-scheduling controller in Section 3 is covered by first
introducing the control strategy in Section 3.1. Then the feed-
forward compensated generalized plant is developed in Section 3.2
and its first-order Taylor series expansion is computed in Section
3.3. Next the measurement for control is elaborated in Section 3.4.
The gain-scheduling synthesis problem is stated in Section 3.5. In
Section 3.6, the augmented LPV plant obtained in Section 3.4 is
converted into a polytopic time-varying system, which is an LPV
system with a polytopic dependency on a scheduling parameter
that takes values in the unit-simplex, so that the gain-scheduling
controller synthesis technique given by Caigny et al. (2008) can be
performed. For comparison, a linear time-invariant feedback H1
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controller is designed in Appendix A.5 using the nominal para-
meters. Simulation results from three separate engine operating
conditions are presented in Section 4. A summary is presented in
the final section.

Standard notation is used throughout the paper. Let R,Z and
ZZ0 denote, respectively, the set of real, integer, and non-negative
integer numbers. The positive definiteness of a matrix A is denoted
by Ag0. The maximum (respectively, minimum) of a is denoted by
a (respectively, a). The abbreviation LFT is used to denote a linear
fractional transformation, which is described in Appendix A.1.
Furthermore, a lower (respectively, upper) LFT is denoted by F ‘

(respectively, F u). The ‘2 space of square-summable sequences on
the set of non-negative integers ZZ0 is given by

‘2 :¼ x : ZZ0-Rn
X1
k ¼ 0

xT ðkÞxðkÞo1

�����
)(
:

For a signal x in the ‘2 space, its ‘2 norm is defined as

JxJ‘2
:¼

X1
k ¼ 0

xT ðkÞxðkÞ

 !1=2

:

Other notation will be explained in due course.
2. Event-based discrete-time system modeling

In this section, the dynamics of the plant (Fig. 1) will be carefully
explained and modeled to develop a control oriented linear
parameter varying (LPV) model. The plant given in Fig. 1 shows
the port-fuel-injection process for a single cylinder engine. However,
the methods used in this paper can be extended to a multiple cylinder
engine by using the individual cylinder fuel–gas ratio estimation
method developed by Suzuki, Shen, Kako, and Oguri (2007).
2.1. Sampling period of the event-based discrete-time system

The discrete-time linear system is obtained by event-based
sampling of the port-fuel-injection process; hence the sampling
time of this discrete-time system is the period of an engine cycle,

ts ¼
1

v

min

rev

60 s

1 min

� �
2 rev

1 cycle

� �
¼

120

v

s

cycle
, ð1Þ

where v represents the engine speed in revolutions per minute
(rpm) (see general engine modeling techniques in Balluchi et al.,
2000).
Combustion 
delay

Oxygen sensor

-

Wall-wetting dynamics

cq
m

O Sensor

G(q)

w (disturbance fuel-to-air ratio)

y

y

1
m

w (desired equivalence ratio)

z

m

Fig. 1. The block diagram of the port-fuel-injection process and sensor dynamics.
2.2. Dynamics of the port-fuel-injection process

The wall-wetting dynamics can be described as follows:

mwðkÞ ¼ ð1�akÞmwðk�1Þþð1�bkÞmiðkÞ,

mcðkÞ ¼ akmwðk�1ÞþbkmiðkÞ, ð2Þ

where kAZZ0, and mw, mc, and mi denote the amount of fuel, on the
wall, in the cylinder, and injected, respectively. The coefficients
aA ½0,1� and bA ½0,1� are the ratios of the fuel delivered from the
wall to the cylinder, and of the fuel entering the cylinder from
injection, respectively. For notational simplicity, ak and bk will be
used to denote the wall-wetting parameters at time k, such that
ak ¼ aðkÞ and bk ¼ bðkÞ. These values can be estimated online
through an available set of engine sensors, which allows the applica-
tion of gain-scheduling control to the plant. Using the discrete-time
dynamics in (2), the transfer function G(q) from mi to mc is

GðqÞ :¼
mcðkÞ

miðkÞ
¼

bkþðak�bkÞq
�1

1�ð1�akÞq�1
, ð3Þ

where q is the forward shift operator that satisfies qu(k)¼u(k+1). The
dotted box in the block diagram in Fig. 1 illustrates the fuel-injection
process. The output of G(q) is the input to the gain block of 1=m0

A,
which is the nominal value of the inverse of the mass of air trapped
in the cylinder mA. The signal w1 represents the deviation
ðmc=mA�mc=m0

AÞ, which will be treated as a disturbance in this
paper. Another constant gain factor c¼14.6 in Fig. 1 is the value for the
air-to-fuel-ratio at stoichiometric. After the combustion delay block
the equivalence ratio y is generated. The diagram of the transfer
function from the amount of fuel injected mi and the disturbance w1 to
the equivalence ratio y (inverse of normalized air-to-fuel ratio) is
shown in the dotted box in Fig. 1.
2.3. Dynamics of the oxygen sensor

To measure y, a full range oxygen sensor is placed in the exhaust
manifold at some distance downstream from the exhaust valve.
Notice that the continuous-time dynamics and delays will change
in the event-based, discrete-time system according to the speed of
the engine (or the sampling time). Therefore, the objective of this
section is to obtain oxygen sensor dynamics in the form of a finite
dimensional, event-based, discrete-time LPV system. Finite dimen-
sionality is required to apply most LPV controller design techniques
and the controller design method which will be presented in
Section 3. To this end, in general, one can approximate the
continuous-time system with a delay by a finite dimensional
event-based, discrete-time LPV system in any standard method.
To illustrate this procedure, we demonstrate how we approximate
the oxygen sensor dynamics by Taylor series approximation in
which the approximation error can be minimized by increasing the
order of the Taylor series approximation.

The dynamics of the oxygen sensor are modeled as a first-order
sensor delay coupled with the transport delay of the exhaust gas
mixture. The transport delay, TD ¼ d=v, of the exhaust gas mixture is
both a function of the oxygen sensor placement, which determines
the constant d, and the engine speed, v. The combined transfer
function in the continuous time domain is

ysðsÞ ¼
expð�TDsÞ

TO2
sþ1

yðsÞ, ð4Þ

where ys is the equivalence ratio measured by the sensor and TO2
is

the time constant of the oxygen sensor. Since the delay TDA
½d=v,d=v� is small, Eq. (4) can be approximated by the second-order
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system

ysðsÞ ¼
1

TDsþ1

1

TO2
sþ1

yðsÞ,

which has the state-space representation

_xO2
¼

� 1
TD

1
TD

0 � 1
TO2

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼:AO2

xO2
þ

0
1

TO2

" #
|fflfflffl{zfflfflffl}
¼:BO2

y,

ys ¼ ½1 0�|fflffl{zfflffl}
¼:CO2

xO2
: ð5Þ

Using ts as the sampling rate, the corresponding discrete system of
Eq. (5) is

xO2
ðkþ1Þ ¼ AO2dxO2

ðkÞþBO2dyðkÞ,

ysðkÞ ¼ CO2dxO2
ðkÞ, ð6Þ

where, due to the invertibility of the matrix AO2
in (5),

AO2d ¼ expðAO2
tsÞ,

BO2d ¼

Z ts

0
expðAO2

tÞ dt
� �

BO2
¼ A�1

O2
ðAO2d�IÞBO2

,

CO2d ¼ CO2
:

Since both TD and ts are functions of engine speed, v, naturally AO2d

and BO2d are as well. A fourth-order Taylor series approximation is
used to capture the parameter variation of AO2d. To ensure that the
coefficients of the Taylor series approximation of AO2d are numeri-
cally stable, the engine speed, v, can be normalized. Furthermore,
due to the way that v appears in A�1

O2
, it is useful to isolate 1=v

instead of v. For this reason, the inverse of the engine speed
1=vA ½1=v,1=v� is normalized to g in the following way:

g¼
1
v �

1
v0

1
v þ

1
v0

where
1

v0
¼

1
v
þ1

v

2
: ð7Þ

The polynomial LFTs (Zhou, Doyle, & Glover, 1996 Chap. 10) MAO2d
and

MA�1
O2

are used to isolate the varying parameter g. The details for the
computation of the polynomial LFTs MAO2d

and MA�1
O2

are provided in
Appendix A.2.

The approximated state-space matrices ÂO2d and B̂O2d are repre-
sented in Fig. 2 by their respective dotted boxes. The approximated
state matrix ÂO2d block is formed by the lower LFT MAO2 d

connected to
the time-varying parameter matrix gkI4 (for details, see Appendices
A.1 and A.2). The approximated input matrix B̂O2d block is formed by
the matrix multiplications of BO2d in Eq. (6). The ÂO2d, B̂O2d, and CO2d
Fig. 2. Block diagram of the combined dynam
blocks are then connected in the standard state-space interconnection
(Skogestad & Postlethwaite, 2005). After performing the interconnec-
tion displayed in Fig. 2, the fourth-order approximated system used
for controller design is given by

x̂O2
ðkþ1Þ ¼ ÂO2dðgkÞx̂O2

ðkÞþ B̂O2dðgkÞyðkÞ,

ŷsðkÞ ¼ CO2dx̂O2
ðkÞ, ð8Þ

where, with calculations presented in Appendix A.2, we can derive

ÂO2dðgkÞ ¼
expð�120

d Þ aðgkÞ

0 bðgkÞ

" #
,

B̂O2dðgkÞ ¼

dðgkþ1Þ
v0ðgk�1Þ ð

aðgkÞ

TO2

Þ�bðgkÞþ1

1�bðgkÞ

2
4

3
5:

The following polynomial functions aðgkÞ and bðgkÞ:

aðgkÞ ¼ 0:3972�0:4891gk�0:0984g2
kþ0:0608g3

kþ0:0975g4
k ,

bðgkÞ ¼ 0:3114�0:7266gkþ0:1211g2
kþ0:3095g3

kþ0:2231g4
k ,

were found when selecting an oxygen sensor time constant of
TO2
¼ 0:06 s and a transport delay of TD ¼ 80=v, by setting d¼80,

indicating that the transport delay is about 54 ms at an engine speed
of 1500 rpm. This was determined empirically through engine
calibration tests.

To demonstrate the effectiveness of the proposed model for the
event-based sampling of the oxygen sensor delay, a comparison is
made between the proposed fourth-order Taylor series approx-
imation model and a fixed model computed at the nominal engine
speed (3500 rpm). In Fig. 3, the step response of the fourth-order
Taylor series approximation model (dashed line) is compared to
the exact discretized model (solid line) at engine speeds of 1000
and 6000 rpm. The fixed model computed at the nominal engine
speed (dash-dot line) is also compared to the exact model in Fig. 3.
It is clear that the fixed model computed at the nominal engine
speed either responds too slowly when the engine speed is less
than the nominal speed or too quickly when the engine speed is
greater than the nominal speed. However, the approximated
model’s response very closely follows the exact model’s response
as shown in Fig. 3.
2.4. An LPV system

In summary, by combining the wall-wetting dynamics in (2) and
the oxygen sensor delay and dynamics in (8) as shown in Fig. 1, we
obtain the following LPV system for the event-based discrete-time
ics of the exhaust gas and sensor delays.
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engine speed fixed at 3500 rpm (dash-dot line) to the exact discretized oxygen sensor delay model in Eq. (6) (solid line) at 1000 and 6000 rpm.

Table 1
Modeling parameters.

Parameter Value used in paper

TD is a function of engine speed, v 80

v
TO2

is a constant 0.06

Table 2
Measurable time-varying parameters (scheduling parameters).

aðcylinder head temperature ðtÞ,manifold absolute pressure ðtÞÞA ½0:081,0:1�

bðcylinder head temperature ðtÞ,manifold absolute pressure ðtÞÞA ½0:28,0:89�

gðvðtÞÞ ¼
1

vðtÞ �
1
v0

1
vðtÞ þ

1
v0

A ½�0:55556,0:26316�
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port-fuel-injection and oxygen sensor dynamics:

xwwðkþ1Þ

xcombðkþ1Þ

x̂O2
ðkþ1Þ

2
64

3
75¼

1�ak 0 0
cak

m0
A

0 0

0 B̂O2dðgkÞ ÂO2dðgkÞ

2
664

3
775

xwwðkÞ

xcombðkÞ

x̂O2
ðkÞ

2
64

3
75

þ

1�bk

cbk

m0
A

0

2
664

3
775miðkÞþ

0

c

0

2
64
3
75w1ðkÞ,

zðkÞ ¼ ½0 0 �CO2d�

xwwðkÞ

xcombðkÞ

x̂O2
ðkÞ

2
64

3
75þw2ðkÞ, ð9Þ

where xww(k) ¼ mw(k�1) and xcomb(k) are the wall-wetting state
and the combustion state for the system in the dotted box in Fig. 1.

As can be seen from Eqs. (5), (6), (8), and (9), to apply the model
of the LPV system, one needs to identify TD and TO2

(which are
shown in Table 1) and measurable time-varying parameters such as
a, b, and g (which are shown in Table 2), which will be used for
scheduling the gain of the controller. In particular, the identified
bounds of scheduling variables (½a,a�,½b,b� and ½g,g�) as shown in
Table 2 will be used in synthesizing the gain-scheduling controller.
From now on, a compact notation Y will denote an appropriate
gain-scheduling matrix that contains the scheduling variables.
The specific structure of Y will be presented in Eq. (14) of Section
3.2. In addition, the LPV system in Eq. (9) is denoted by PðYÞ. In the
following section, we illustrate how to design the LPV gain-
scheduling controller as a function of Y for the LPV model
developed in this section.
3. LPV gain-scheduling controller design

3.1. Control strategy

The objective of the control system is to regulate the equiva-
lence ratio y to a reference input w2 using feed-forward and feed-
back control against the disturbance signal w1 (see Fig. 1) and the
time-varying wall-wetting dynamics. In particular, we want to
guarantee the stability of the closed-loop system and also minimize
the effect of the disturbances for any conceivable wall-wetting
dynamics variations. The proposed control architecture is illustr-
ated in Fig. 4. This scheme has four components, that is a feedback
controller KðYÞ, a feed-forward controller Kf ðYÞ, a filter L(q), and an
integrator I(q).

The feedback controller KðYÞ will be designed for the general-
ized plant (solid box of Fig. 4), after selecting Kf ðYÞ, L(q), I(q) and
weighting functions W1(q) and W2(q). Next, we will explain how to
select these functions. After the selection, we will derive the
generalized plant in Section 3.4 and we will synthesize KðYÞ for
the derived generalized plant in Section 3.5.

The feed-forward controller Kf ðYÞ is designed using the inverse
of cG(q)

Kf ðYÞ ¼
G�1ðqÞ

c
¼

1

c

1�ð1�akÞq
�1

bkþðak�bkÞq
�1

� �
:

The selection of the inverse of the plant as a feed-forward controller
is a standard technique (Skogestad & Postlethwaite, 2005). The
input to the feed-forward controller is the mass of the air mA, which
can be measured online, multiplied by the equivalence ratio set
point w2. This is denoted by w3, such that w3 ¼ w2mA. L(q) is
designed as a low-pass filter such that the error output z(k) is
filtered with it

LðqÞ ¼
0:9999

q�0:0001405
:

The reason to filter the error output is that the control synthesis
technique given by Caigny et al. (2008) requires that the output
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matrix be independent of the time-varying parameters and the
measurement for control must not be corrupted by the unweigh-
ted exogenous input, ~wðkÞ of the generalized plant. The low-
pass filtering for this purpose is a standard procedure (Apkarian,
Gahinet, & Becker, 1995). The low-pass filter L(q) was obtained
from the discretization of the following first-order continuous
transfer function:

LcðsÞ ¼
2pfc

sþ2pfc

with a sample period of 120=v0. The cut-off frequency fc of Lc(s) was
selected to be 20 Hz, which is high enough to obtain low error
between the intended output of the continuous-time filter Lc(q) and
the observed output of the discrete-time filter L(q) at different
engine speeds, since the sampling rate is engine speed dependent.
The filtered output is also integrated using the integrator

IðqÞ ¼
1

q�1

to obtain zero steady-state error.
To use ‘2 gain or H1 norm (Zhou et al., 1996) for the perform-

ance criterion for shaping the frequency response of the closed-
loop system, weighing functions (which can be considered design
parameters) are also introduced in Fig. 4. The weighting functions
are selected in the continuous-time domain as

Wc
1ðsÞ ¼

100

50sþ1
,

Wc
2ðsÞ ¼

20

50sþ1

� �2

:

The bandwidth (or cut-off frequency) of each weighting function is
very small and the DC gain is large, as shown in Fig. 5. The weighting
functions are selected to model the frequency content of their
respective input. For the fuel-to-air ratio disturbance w1, the weight-
ing function W1

c(s) is selected as a simple first-order low-pass filter to
place an emphasis on low frequency disturbances, such as a step
throttle change. The weighting function W2

c(s) is chosen to be a
second-order low-pass filter with a high DC gain (4 times larger than
that of W1

c(s)) to provide more weight on the low frequency signals
since w2 is the step input of the desired equivalence ratio. To
incorporate the weighting functions W1

c(s) and W2
c(s) into the discrete

time system, they were discretized at a sample period of 120=v0 to
obtain the following discrete-time weighting functions:

W1ðqÞ ¼
0:1411

q�0:9986
,

W2ðqÞ ¼
0:0003982qþ0:0003979

q2�1:997178qþ0:997180
:

The input to each of the weighting functions is the unweighted
exogenous inputs which are denoted by ~w1, ~w2, and ~w3. Since there is
no weighting function for w3, in this case ~w3 ¼w3; which means that it
is weighted equally at all frequencies. Notice that the weighting
functions are chosen by the expected system inputs and their relative
(frequency) importance, and they are only used for controller synthesis
(Skogestad & Postlethwaite, 2005; Zhou et al., 1996).

3.2. Feed-forward compensated generalized plant

The feed-forward compensated generalized plant is denoted by
HðYÞ. As depicted in the dashed box of Fig. 4, the feed-forward
compensated generalized plant consists of the feed-forward con-
troller Kf ðYÞ, the plant PðYÞ, and the weighting functions W1(q) and
W2(q). The components of the feed-forward controller Kf ðYÞ and
the plant PðYÞ are illustrated in Fig. 6. The feed-forward controller
Kf ðYÞ components are encased inside of the dashed box in Fig. 6 and
the plant PðYÞ components are outside of the dashed box.
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In the feed-forward control compensated generalized plant
HðYÞ, the time-varying parameters ak and bk are equivalently
transformed to a constant nominal value plus a time-varying
fluctuation. For instance, the parameter variation of akA ½a,a�with
a0 ¼ ðaþaÞ=2 is represented by

adðkÞ ¼ ak�a0A ½a�a0,a�a0�,

so that the parameter range of adðkÞ is centered around zero. Hence,
ak is replaced by a0þadðkÞ. The same is done for bkA ½b,b� as well.
The parameter variation of v is represented by g as shown in Eq. (7).
The upper LFTs (see Appendix A.1) inside the dotted box in Fig. 6,
M1=b and Ma=b are used to isolate the time-varying parametersbdðkÞ
and adðkÞ (Zhou et al., 1996, Chap. 10). bd is isolated from 1=bk by

1

bk

¼
1

b0þbdðkÞ
¼F uðM1=b,bdðkÞÞ, ð10Þ

where

ð11Þ

Both bdðkÞ and adðkÞ are isolated from ak=bk by

ak

bk

¼
a0þadðkÞ
b0þbdðkÞ

¼F uðMa=b,DðkÞÞ, ð12Þ

where

With the parameter variation represented in this way, the
system is written as a discrete-time LPV system with LFT parameter
dependency,

xðkþ1Þ

lðkÞ

zðkÞ

2
64

3
75¼

A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12

2
64

3
75

xðkÞ

pðkÞ

~wðkÞ

uðkÞ

2
66664

3
77775,

pðkÞ ¼YðkÞlðkÞ, ð13Þ
where xðkÞARn is the state at time k, ~wðkÞARr is the unweighted
exogenous input, zðkÞARp is the error output, pðkÞ,lðkÞARnp are the
pseudo-input and pseudo-output connected by YðkÞ, and uðkÞARm

is the control input. The state-space matrices for the LPV system in
(13) are provided in (41) of Appendix A.3.

The time-varying parameter Y in Eq. (13) follows the structure

YAH¼ fdiag ðbdI3,adI2,gI9Þ : jadjrd1,jbdjrd2,jgjr1g, ð14Þ

where d1 ¼ ða�aÞ=2 and d2 ¼ ðb�bÞ=2.
3.3. First-order Taylor series expansion of the LPV system

By inspection of the LPV system in Eq. (13), D00 was found to be a
non-zero matrix. Hence, the system matrices are not affine func-
tions, i.e., a linear combination of the time-varying parameters plus
a constant translation. It is noted at this juncture that LPV con-
trol techniques exist which do handle rational parameter variation,
namely the method developed by Wu and Dong (2006). However,
for discrete-time systems, no controller formula covering all
parameter variation is given by Wu and Dong (2006). Instead,
for each set of parameters a controller must be solved for using the
method given by Gahinet (1996). Since a different controller is
needed for each set of parameters, gridding over the parameter
space (Apkarian & Adams, 1998) is necessary, which increases the
complexity of implementing the controller in practice. In contrast,
the method developed by Caigny et al. (2008) does not require any
gridding over the parameter space. Also, as shown in Eq. (14) and
Table 2 each of the parameters are less than 1 at all times. Therefore,
neglecting the higher-order parameter variation is a justifiable
approximation. Hence, to utilize the control synthesis technique
given by Caigny et al. (2008), we calculate the first-order Taylor
series approximation of the system matrices to obtain affine
functions in Y. To find the Taylor series expansion, first the LFT
(13) is re-arranged to the following representation:

pðkÞ ¼YðkÞlðkÞ: ð15Þ

Notice that Eq. (15) is an upper LFT, i.e.,

HðYÞ :¼ FuðM,YÞ

¼
A B1 B2

C1 D11 D12

" #
þ

B0

D10

" #
YðI�D00YÞ�1

½C0 D01 D02�:

ð16Þ

Using the Taylor series expansion at Y¼ 0, the system can be
approximated as

ĤðYÞ ¼Hð0Þþad½,adHð0Þ�þbd½,bdHð0Þ�þg½,gHð0Þ�,

¼:
Âðad,bd,gÞ B̂1ðad,bd,gÞ B̂2ðad,bd,gÞ
Ĉ 1ðad,bd,gÞ D̂11ðad,bd,gÞ D̂12ðad,bd,gÞ

" #
, ð17Þ

where the relationship between ad, bd, and g, andY can be found in
Eq. (14) and ½raHð0Þ� is the partial derivative of the LFT system HðYÞ
in Eq. (16) with respect to a, which can be calculated as shown by
Nagamune and Choi (2010). The state-space representation after
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performing the Taylor series expansion is given by

xðkþ1Þ

zðkÞ

" #
¼

Âðad,bd,gÞ B̂1ðad,bd,gÞ B̂2ðad,bd,gÞ
Ĉ 1ðad,bd,gÞ D̂11ðad,bd,gÞ D̂12ðad,bd,gÞ

" # xðkÞ

~wðkÞ

uðkÞ

2
64

3
75:
ð18Þ

3.4. An augmented LPV system for synthesis

To create an appropriate measurement for gain-scheduling
control, the LPV system ĤðYÞ must be augmented with the low-
pass filter L(q) and the integrator I(q). After augmenting the affine
LPV system with the low pass filter and the integrator, the
augmented state-space representation is given by

xAUGðkþ1Þ

zðkÞ

eðkÞ

2
64

3
75¼

~Aðad,bd,gÞ ~B1ðad,bd,gÞ ~B2ðad,bd,gÞ
~C 1ðad,bd,gÞ ~D11ðad,bd,gÞ ~D12ðad,bd,gÞ

~C 2 0 0

2
64

3
75 xAUGðkÞ

~wðkÞ

uðkÞ

2
64

3
75,

ð19Þ

where the augmented states are given by xAUGðkÞ ¼ ½xðkÞ
T xLðkÞ

xIðkÞ�
TARnAUG with nAUG¼n+2, and the measurement for control

is given by eðkÞ ¼ ePðkÞ eIðkÞ
� �TARq with q¼2. The state-space

matrices are given by

~Aðad,bd,gÞ ¼
Âðad,bd,gÞ 0 0

BLĈ 1ðad,bd,gÞ AL 0

0 CL 1

2
664

3
775,

~B1ðad,bd,gÞ ¼
B̂1ðad,bd,gÞ

BLD̂11ðad,bd,gÞ
0

2
64

3
75,

~B2ðad,bd,gÞ ¼
B̂2ðad,bd,gÞ

BLD̂12ðad,bd,gÞ
0

2
64

3
75,

~C 1ðad,bd,gÞ ¼ ½Ĉ 1ðad,bd,gÞ 0 0�,

~C 2 ¼
0 CL 0

0 0 1

� 	
,

and ~D11ðad,bd,gÞ ¼ D̂11ðad,bd,gÞ, ~D12ðad,bd,gÞ ¼ D̂12ðad,bd,gÞ. The
matrices (AL, BL, CL) represent the state-space matrices of the
low-pass filter L(q).

3.5. A gain-scheduling control synthesis problem

Having augmented all components for the controller synthesis,
we need to synthesize theH1 gain-scheduling controller KðYÞ. The ‘2

gain of the LPV system in Eq. (19) with a gain-scheduling feedback
controller is defined as

max
YAH, J ~wJ‘2 a0

JzJ‘2

J ~wJ‘2

: ð20Þ

Now we formally state the gain-scheduling control design problem.

Problem. The goal is to design a static gain-scheduling control
uðkÞ ¼ KðYÞeðkÞ that stabilizes the closed-loop system and mini-
mizes the worst-case ‘2 gain (H1 norm) of the closed-loop LPV
system in Eq. (20) for any trajectories of YðkÞAH.

The gain-scheduling method provided by Caigny et al. (2008)
guarantees anH1 cost such that for an exogenous input ~w, the per-
formance output z satisfies

JzJ‘2
oZJ ~wJ‘2

,

for any trajectories of YðkÞAH. This method was derived for
discrete-time polytopic time-varying systems. Therefore, in the next
section, we will transform our augmented system into a polytopic
time-varying system to synthesize the controller.

3.6. Controller synthesis for polytopic linear time-varying system

The augmented state-space representation ( ~Aðad,bd,gÞ, ~B1ðad,
bd,gÞ, y) in Eq. (19) can be converted into a discrete-time polytopic
time-varying system (A½lðkÞ�, B1½lðkÞ�, y) using the state-space
matrices at vertices fV ig of the parameter space polytope displayed
in Fig. 7. Any system inside of the convex parameter set is repre-
sented by a convex combination of the vertex systems as weighted
by the vector lðkÞ of barycentric coordinates. Barycentric coordi-
nates are used to specify the location of a point as the center of
mass, or barycenter, of masses placed at the vertices of a simplex.
Warren, Schaefer, Hirani, and Desbrun (2007) provide a formula,
which is covered in Appendix A.4, for computing the barycentric
coordinates for any convex polytope. The discrete-time polytopic
linear time-varying system is given by

xðkþ1Þ

zðkÞ

eðkÞ

2
64

3
75¼ A½lðkÞ� B1½lðkÞ� B2½lðkÞ�

C 1½lðkÞ� D11½lðkÞ� D12½lðkÞ�
C 2 0 0

2
64

3
75

xðkÞ

wðkÞ

uðkÞ

2
64

3
75,

eðkÞ ¼ ½ePðkÞ eIðkÞ�
T, ð21Þ

where, for all kAZZ0, lðkÞ is the vector of time-varying barycentric
coordinates that belong to the unit simplex

LN ¼ zARN :
XN

i ¼ 1

zi ¼ 1,ziZ0,i¼ 1, . . . ,N

( )
,

where N is the number of vertices of the polytope. A way to
compute the barycentric coordinate vector lðkÞ for a given adðkÞ,
bdðkÞ, and gðkÞ is provided in Appendix A.4. For all kAZZ0, the rate
of variation of the weights

DliðkÞ ¼ liðkþ1Þ�liðkÞ, i¼ 1, . . . ,N

is limited by the calculated bound b such that

bliðkÞrDliðkÞrbð1�liðkÞÞ, i¼ 1, . . . ,N, ð22Þ

where bA ½0,1�.
The system matrices A½lðkÞ�ARnAUG�nAUG , B1½lðkÞ�ARnAUG�r ,

B2½lðkÞ�A RnAUG�m, C 1½lðkÞ�ARp�nAUG , D11½lðkÞ�ARp�r , D12½lðkÞ�A
Rp�m belong to the polytope

D¼ fðA,B1,B2,C 1,D11,D12ÞðlðkÞÞ : ðA,B1,B2,C 1,D11,D12ÞðlðkÞÞ

¼
XN

i ¼ 1

liðkÞðA,B1,B2,C 1,D11,D12Þi,lðkÞALNg:

The system matrices at any time k are the weighted summation
of vertex system matrices fV ig weighted by their barycentric
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coordinates liðkÞ, i.e.,

AðkÞ ¼
XN

i ¼ 1

liðkÞAðV iÞ, i¼ 1, . . . ,N:

The same computation holds for B1, B2, C 1, D11, and D12 as well.
A finite set of LMIs in Caigny et al. (2008) can be used to

design the gain-scheduling controller. Due to Theorem 3 of Caigny
et al. (2008), if there exists matrices Gi,1ARq�q, Gi,2ARðnAUG�qÞ�q,
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Gi,3ARðnAUG�qÞ�ðnAUG�qÞ, Zi,1ARm�q and symmetric matrices PiA
RnAUG�nAUG such that the LMI conditions in Eqs. (24) and (25) are
satisfied, the gain-scheduling static feedback control is then obtained as

KðlðkÞÞ ¼ Ẑ ðlðkÞÞĜðlðkÞÞ�1, ð23Þ

where

ẐðlðkÞÞ ¼
XN

i ¼ 1

liðkÞZi,1 and ĜðlðkÞÞ ¼
XN

i ¼ 1

liðkÞGi,1:
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This control is proved to stabilize affine parameter-dependent systems
such as (21) with a guaranteedH1 performance bounded by Z for all
lALN and Dl that satisfies (22).

The LMIs in Eqs. (24) and (25) are solved by programming them
into MATLAB using the LMI lab (Gahinet, Nemirovski, Laub, & Chilali,
1995) in the Robust Control toolbox. The matrices Gi,1, Gi,2, Gi,3, Zi,1, Pi,
and theH1 costZ are programmed in MATLAB as free matrix variables
for the LMI optimization to choose. Since all LMIs are constructed using
symmetric matrices, % represents entries which follow from symme-
try. During the solution process, theH1 cost Z is minimized until the
optimal solution is obtained by using the following LMIs:

ð1�bÞPiþbP‘ % % %

GT
i A

T

i þZT
i B

T

2,i GiþGT
i �Pi % %

B
T

1,i 0 ZI %

0 C 1,iGiþD12,iZi D11,i ZI

2
666664

3
777775g0 ð24Þ

hold for i ¼ 1,y,N and ‘¼ 1, . . . ,N and

ð1�bÞPiþð1�bÞPjþ2bP‘ % % %

GT
j A

T

i þGT
i A

T

j þZT
j B

T

2,iþZT
i B

T

2,j GiþGT
i þGjþGT

j �Pi�Pj % %

B
T

1,iþB
T

1,j 0 2ZI %

0 C 1,iGjþC 1,jGiþD12,iZjþD12,jZi D11,iþD11,j 2ZI

2
666664

3
777775g0

ð25Þ

hold for ‘¼ 1, . . . ,N, i ¼ 1,y,N�1, and j ¼ i+1,y,N, with

Gi ¼
Gi,1 0

Gi,2 Gi,3

" #
and Zi ¼ ½Zi,1 0�:
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4. Simulation results

To validate the effectiveness of the proposed gain-scheduling
controller, simulations are shown using the original plant in Eq. (13)
for the following cases: engine cold start, load change, and engine speed
change.

The necessity of a gain-scheduled controller is demonstrated by
comparing its performance with that of a fixed gain H1 controller
for the nominal parameters. The fixed gain H1 control synthesis
procedure is reviewed in Appendix A.5.

In each simulation, the time-varying parameters a and b are
corrupted by low-pass filtered white noise of up to 10% their nomi-
nal values to represent the slowly drifting offset that might occur in
practical situations. To see transient responses, the initial condi-
tions of the plant for Case 1 were chosen such that a little extra fuel
is injected at first, giving a slightly higher equivalence ratio than 1.
The initial conditions in Cases 2 and 3 were set such that the plant
would start with an equivalence ratio of 1. For the following simul-
ation cases, the extracted profiles of time-varying parameters from
engine dynamometer tests were used.

4.1. Case 1: engine cold start

We simulate an engine operation when it was started at freezing
temperatures (0 1C) and heated to its normal operation tempera-
ture of approximately 100 1C within about 2 min at an engine speed
of 1500 rpm. The purpose of this simulation is to emulate the cold
start of an internal combustion engine when the engine is operated
at high idle speed during the warm-up. Note that during the engine
warm-up process the fuel vapor is much less at low temperature than
that at high temperature. Therefore, this leads to quite different wall-
wetting dynamics. The wall-wetting dynamics coefficients a and b
defined in Eq. (3) were obtained from actual engine test data and they
are functions of engine cylinder head temperature, speed and load.
Since speed and load are fixed in this simulation, both a and b are
functions of engine temperature and their values are shown in Fig. 8E.
Notice that the transient response at 25 s in Fig. 8 is due to the change
in the wall-wetting parameters as shown in Fig. 8E. When the engine
has been warming up for about 90 s, the closed-loop system with the
fixed H1 controller becomes unstable, while the LPV controller
remains stable. Thus, in Fig. 8A, one can readily see the LPV controller’s
advantage of guaranteed stability as the parameters vary with time.
4.2. Case 2: load change

In this case we simulate an engine dynamometer experiment for
an engine operated at a temperature of 80 1C with an engine speed
of 1500 rpm. After the engine is stably operated at this condition
with a 32% throttle, the load is increased by a step throttle position
from 32% to 46%. Note that in the dynamometer test, the engine
speed was maintained by dynamometer by increasing the load
torque. This is similar to the driving condition that a step throttle is
applied to maintain the vehicle speed when the vehicle is driven up
a hill. Note that the step increment of throttle position produces a
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slight change in the wall-wetting parameter b as shown in Fig. 9E.
But in Fig. 9, one can find the benefit of guaranteed performance of
the gain-scheduling controller over the time-varying parameters.
Note that the step throttle occurred at the 30th second results in a
momentary spike in the equivalence ratio due to the step air mass
flow; but it is quickly pulled back into its target level by the gain-
scheduled controller, while the fixed H1 controller takes much
longer time with a lot of oscillations and uses more control effort.

4.3. Case 3: engine speed change

In this simulation, an engine was operated in a dynamometer
with its cylinder head temperature at 80 1C. To demonstrate the
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are compared for the gain-scheduling feedback controller (solid line) and the fixed H1
b (dash-dot line, right axis) are displayed in plot E. The engine speed v is displayed in
capability for the gain-scheduling controller to handle fast engine
speed variations, smoothed step commands were applied to the
engine dynamometer to manipulate the engine speeds shown in
Fig. 10F. The resulting engine wall-wetting dynamic parameters,
shown in Fig. 10E, were used in the simulation. In Fig. 10A, one can
see that both controllers, gain-scheduling and fixed H1, regulate
the engine equivalence ratio to its target value of one within 5%
error except at 25th second when the engine speed was increased
abruptly from 1000 to 4500 rpm. In this case, the engine equiva-
lence ratio response converges to its target value smoothly for the
gain-scheduling controller but with a lot of oscillations for the fixed
H1 controller. This situation is similar to a transmission gear
shifting where a rapid engine speed change may occur. Again, one
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can see the advantage of guaranteed performance over the time-
varying parameters as the gain-scheduled controller regulates the
equivalence ratio back into safe limits quicker and with less
overshoot than the fixed H1 controller.
5. Summary

In this paper, a systematic process for developing gain-scheduling
PI controllers for discrete-time LPV systems is presented. First, a
control oriented LPV model is developed using the dynamics of a port-
fuel-injection process. Then the LPV model obtained is investigated
and found to contain parameter variation that is not affine. Due to
limitations in current LPV control schemes for discrete-time systems
discussed in Section 3.3, a first-order Taylor series approximation is
performed on the LPV system HðYÞ in (16) to obtain an approximated
LPV system ĤðYÞ in (17) with only affine parameter variation. The
measurement for control is generated by augmenting the approxi-
mated LPV system with a low-pass filter and an integrator. The
augmented, approximated LPV system is then converted to a poly-
topic LPV system so that the synthesis method given by Caigny et al.
(2008) can be utilized. To validate the gain-scheduling controller
found with the finally obtained LPV system ĤðYÞ, simulations are
performed using the original LPV system HðYÞ. From the simulation
results, it is clear that although the approximated LPV system ĤðYÞ is
used to design the gain-scheduling controller it still performs very
well when applied to the original LPV system HðYÞ.
Appendix A

A.1. Linear fractional transformation

For completeness, we will now give the definition of a linear
fractional transformation (LFT). Linear fractional transformations are
used to efficiently formulate the interconnection of multi-input multi-
output sub-systems with multiple sources, such as uncertainties,
noises, disturbances, and varying parameters. As given by Zhou et al.
(1996), the possibly complex coefficient matrix M is partitioned as

M¼
M11 M12

M21 M22

" #
ACðp1þp2Þ�ðq1þq2Þ ð26Þ

with D‘ACq2�p2 and DuACq1�p1 . A lower LFT is given with respect to
D‘ as

F ‘ðM,D‘Þ ¼M11þM12D‘ðI�M22D‘Þ
�1M21: ð27Þ

An upper LFT is given with respect to Du by

F uðM,DuÞ ¼M22þM21DuðI�M11DuÞ
�1M12: ð28Þ

From the diagrams in Fig. 11, the reason behind the terminology of
lower and upper LFTs should be clear. The set of equations represent-
ing the lower LFT diagram in Fig. 11A are given by

z1

y1

" #
¼

M11 M12

M21 M22

" #
w1

u1

" #
,

M

Δ

z1 w1

u1y1

M

Δu

z2 w2

u2y
2

Fig. 11. (A) Diagram of a lower LFT. (B) Diagram of an upper LFT.
u1 ¼D‘y1, ð29Þ

and the equations representing Fig. 11B are given by

y2

z2

" #
¼

M11 M12

M21 M22

" #
u2

w2

" #
,

u2 ¼Duy2: ð30Þ

The partitioning of M depends on the interconnections with the
isolated parameterD‘ orDu and can be determined using the MATLAB
function ‘‘sysic’’ (Balas, Doyle, Glover, Packard, & Smith, 2001).
A.2. Oxygen sensor modeling details

To capture this parameter variation, the components of the transfer
function diagram in Fig. 2 are now covered in detail. The transport delay
used here is TD ¼ 80=v. To solve for AO2d, first AO2

is multiplied by ts

AO2
ts ¼

� v
80

v
80

0 � 1
TO2

2
4

3
5120

v
¼

�3
2

3
2

0 � 120
TO2

v

2
4

3
5: ð31Þ

Next, the matrix exponent of AO2
ts is computed, which gives

AO2d ¼
expð�3

2Þ p1ðvÞ

0 p2ðvÞ

" #
, ð32Þ

where

p1ðvÞ ¼
�3

2 exp �3
2


 �
�exp � 120

TO2
v

� � 
� 120

TO2
v þ

3
2

, ð33aÞ

p2ðvÞ ¼ exp �
120

TO2
v

� �
: ð33bÞ

To represent the parameter variation in AO2d, a fourth-order Taylor
series approximation of p1(v) and p2(v) is used. To ensure that the
coefficients of the Taylor series approximations of p1(v) and p2(v) are
numerically stable with respect to the condition number (Trefethen &
Bau, 1997), 1=v is normalized. The normalization used is given in Eq. (7)
in Section 2.3, but is reproduced here

g¼
1
v �

1
v0

1
v þ

1
v0

where
1

v0
¼

1
v
þ1

v

2
:

Solving Eq. (7) for 1=v, and substituting into Eqs. (33a) and (33b), p1ðgÞ
and p2ðgÞ are found to be

p1ðgÞ ¼
�3

2 exp �3
2


 �
�exp � 120

TO2
v0

1þg
1�g

� � � 
� 120

TO2
v0

1þg
1�g

� 
þ3

2

, ð34aÞ

p2ðgÞ ¼ exp �
120

TO2
v0

1þg
1�g

� �� �
: ð34bÞ

Finally, AO2d is represented with the following lower LFT:

AO2d ¼F ‘ðMAO2 d
,gInÞ, ð35Þ

where

ð36Þ
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and

an ¼
1

n!

dnp1ð0Þ

dgn
,

bn ¼
1

n!

dnp2ð0Þ

dgn
:

From Eq. (6), recall that BO2d ¼ A�1
O2
ðAO2d�IÞBO2

. Since AO2d is already
found, A�1

O2
is now computed.

A�1
O2
¼ TDTO2

� 1
TO2
� 1

TD

0 � 1
TD

2
4

3
5¼ �TD �TO2

0 �TO2

" #
¼
�80

v �TO2

0 �TO2

" #
: ð37Þ

Thus, A�1
O2

can be represented with the following lower LFT:

A�1
O2
¼F ‘ MA�1

O2

,
1

v

� �
, ð38Þ
A¼

0:91 0 0:0369 0 0 0 0

0:2617 0 0:1544 0 0 1:4352 0

0 0 0:8475 0 0 0 0

0 1:4506 0 0:2231 0:3972 0 0

0 2:6311 0 0 0:3114 0 0

0 0 0 0 0 0:9986 0

0 0 0 0 0 0 1:9972 �

0 0 0 0 0 0 0:9987

2
66666666666664

B0 ¼

�0:09 0:0625 0 0 1 0 0 0

0:2617 0:2617 0 0 0 0 0 0

0 �0:2585 1:6949 1:6949 0 0 0 0

0 0 0 0 0 0:0664 �0:0027 �0:0214

0 0 0 0 0 0:0436 �0:0073 �0:0186

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
66666666666664

B1 ¼

0 0 0:0043

0 0 0:0179

0 0 �0:0073

0 0 0

0 0 0

0:3756 0 0

0 0:0266 0

0 0 0

2
66666666666664

3
77777777777775
AR8�3, B2 ¼

0:0369

0:1544

0

0

0

0

0

0

2
66666666666664

3
77777777777775
AR8�1,

C0 ¼

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0:1525 0 0 0 0 0

0 0 �1 0 0 0 0 0

�1 0 0:41 0 0 0 0 0

0 63:6832 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 25:2968 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
666666666666666666666666666664

3
777777777777777777777777777775

AR14�8, C1 ¼ ½0 0 0
where

ð39Þ

To normalize 1=v to g, the following upper LFT is used:

ð40Þ
A.3. System matrices

The state-space matrices for the LPV system in (13) have been
found to be
0

0

0

0

0

0

0:9985

0

3
77777777777775
AR8�8,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�0:0179 �0:0933 �0:4891 �0:0984 0:0608 0:0975

�0:0134 0 �0:7266 0:1211 0:3095 0:2231

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777777775
AR8�14,

�1 0 0 0:015 0:015�AR1�8,



D00 ¼

0 1:6949 0 0 0 0 0 0 0 0 0 0 0 0

0 �1:6949 0 0 0 0 0 0 0 0 0 0 0 0

0 0:2585 �1:6949 �1:6949 0 0 0 0 0 0 0 0 0 0

0 �1:6949 0 0 0 0 0 0 0 0 0 0 0 0

�1 0:6949 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 �0:4891 �0:0984 0:0608 0:0975 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

2
666666666666666666666666666664

3
777777777777777777777777777775

AR14�14,

D01 ¼

0 0 0:1161 1

0 0 �0:1161 0

0 0 0:0073 0

0 0 �0:0476 0

0 0 0:0476 0:41

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
666666666666666666666666666664

3
777777777777777777777777777775

AR14�3, D02 ¼

1

0

0

0

0:41

0

0

0

0

0

0

0

0

0

2
666666666666666666666666666664

3
777777777777777777777777777775

AR14�1,

D10 ¼ ½0 0 0 0 0 0 0 0 0 0 0 0 0 0 0�AR1�14, D10 ¼ ½0 0 0�AR1�14, D10 ¼ ½0�AR: ð41Þ
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A.4. Barycentric coordinates

The parameter variation is contained inside of the convex polytope.
The gain-scheduling control used (Caigny et al., 2008) requires that the
parameter variation be expressed as a combination of the vertices of
this polytope. In order to compute the convex combination coeffi-
cients fliðYÞg for a given Y and vertices fV ig, barycentric coordinates
are used. The barycentric coordinate function is defined as

liðYÞ ¼
UiðYÞP

iUiðYÞ
, ð42Þ

where UiðYÞ is the weight function of vertex i for a point Y inside of
the convex polytope. The weight function is

UiðYÞ ¼
volðV iÞQ

jA f1,2,3gðnj � ðV i�YÞÞ
, ð43Þ

where vol ðV iÞ is the volume of the parallelepiped span by the normals
to the facets incident on vertex i, i.e., V i (Warren et al., 2007). {nj} is
the collection of normal vectors to the facets incident on vertex i.
The volume of a parallelepiped can be found as

volðV iÞ ¼ det

n1

n2

n3

2
64

3
75

�������
�������: ð44Þ

A.5. Design of LTI feedback controller

The open-loop state-space plant used for designing this con-
troller is the same as the one in Fig. 6, but has the low-pass filter L(q)
and the integrator I(q) added without performing any Taylor series
expansion. Using the nominal parameters, the closed-loop state-
space representation is

xðkþ1Þ ¼ ACLðKÞxðkÞþB1wðkÞ,

zðkÞ ¼ CCLðKÞxðkÞþD11wðkÞ, ð45Þ

where

ACLðKÞ ¼ AþB2KC2 and CCLðKÞ ¼ C1þD12KC2:

Denoting the transfer function from w to z by Hwz, the inequality
JHwzJ

2
1om holds if, and only if, there exists a symmetric matrix P

such that

P ACLðKÞP B1 0

PAT
CLðKÞ P 0 PCT

CLðKÞ

BT
1 0 I DT

11

0 CCLðKÞP D11 mI

2
66664

3
77775g0 ð46Þ

is feasible (De Oliveira, Geromel, & Bernussou, 2002). The optimal
feedback controller K for the closed-loop system (45) is formulated
as the optimization of the bilinear matrix inequality (BMI)

min
m,P,K

m subject to ð46Þ, ð47Þ

where P¼ PT ARn�n and KAR1�2. The BMI (47) was solved using
the PENBMI software (Kočvara & Stingl, 2006) as a MATLAB
function in conjunction with the YALMIP (Lfberg, 2004) program-
ming interface to find the fixedH1 controller K ¼ ½1:8260 0:3205�.
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